skip to main content


Title: La Independiente: Designing Ubiquitous Systems for Latin American and Caribbean Women Crowdworkers
Since 2018, Venezuelans have contributed to 75% of leading AI crowd work platforms’ total workforce, and it is very likely other Latin American and Caribbean (LAC) countries will follow in the context of the post covid-19 economic recovery. While crowd work presents new opportunities for employment in regions of the world where local economies have stagnated, few initiatives have investigated the impact of such work in the Global South through the lens of feminist theory. To address this knowledge gap, we surveyed 55 LAC women on the crowd work platform Toloka to understand their personal goals, professional values, and hardships faced in their work. Our results revealed that most participants shared a desire to hear the experiences of other women crowdworkers, mainly to help them navigate tasks, develop technical and soft skills, and manage their finances more efficiently. Additionally, 75% of the women reported that they completed crowd work tasks on top of caring for their families, while over 50% confirmed they needed to negotiate their family responsibilities to pursue crowd work in the first place. These findings demonstrated a vital component lacking from the experiences of these women was a sense of connection with one another. Based on these observations, we propose a system designed to foster community between LAC women in crowd work to improve their personal and professional advancement.  more » « less
Award ID(s):
2203212
NSF-PAR ID:
10490568
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Ubicomp for All Symposium
Page Range / eLocation ID:
404 to 406
Subject(s) / Keyword(s):
["crowd-work, gig work, AI labor, Latin American and Caribbean women, wearable technology"]
Format(s):
Medium: X
Location:
Cancun, Quintana Roo Mexico
Sponsoring Org:
National Science Foundation
More Like this
  1. There have been many initiatives to improve the experiences of marginalized engineering students in order to increase their desire to pursue the field of engineering. However, despite these efforts, workforce numbers indicate lingering disparities. Representation in the science and engineering workforce is low with women comprising only 16% of those in science and engineering occupations in 2019, and underrepresented minorities (e.g., Black, Hispanic, and American Indian/Alaskan Native) collectively representing only approximately 20% (National Center for Science and Engineering Statistics [NCSES], 2022). Additionally, engineering has historically held cultural values that can exclude marginalized populations. Cech (2013) argues that engineering has supported a meritocratic ideology in which intelligence is something that you are born with rather than something you can gain. Engineering, she argues, is riddled with meritocratic regimens that include such common practices as grading on a curve and “weeding” out students in courses.Farrell et al. (2021) discuss how engineering culture is characterized by elitism through practices of epistemological dominance (devaluing other ways of knowing), majorism (placing higher value on STEM over the liberal arts), and technical social dualism (the belief that issues of diversity, equity, and inclusion should not be part of engineering). These ideologies can substantially affect the persistence of both women and people of color–populations historically excluded in engineering, because their concerns and/or cultural backgrounds are not validated by instructors or other peers which reproduces inequality. Improving student-faculty interactions through engineering professional development is one way to counteract these harmful cultural ideologies to positively impact and increase the participation of marginalized engineering students. STEM reform initiatives focused on faculty professional development, such as the NSF INCLUDES Aspire Alliance (Aspire), seek to prepare and educate faculty to integrate inclusive practices across their various campus roles and responsibilities as they relate to teaching, advising, research mentoring, collegiality, and leadership. The Aspire Summer Institute (ASI) has been one of Aspire’s most successful programs. The ASI is an intensive, week-long professional development event focused on educating institutional teams on the Inclusive Professional Framework (IPF) and how to integrate its components, individually and as teams, to improve STEM faculty inclusive behaviors. The IPF includes the domains of identity, intercultural awareness, and relational skill-building (Gillian-Daniel et al., 2021). Identity involves understanding not only your personal cultural identity but that of students and the impact of identity in learning spaces. Intercultural awareness involves instructors being able to navigate cultural interactions in a positive way as they consider the diverse backgrounds of students, while recognizing their own privileges and biases. Relational involves creating trusting relationships and a positive communication flow between instructors and students. The ASI and IPF can be used to advance a more inclusive environment for marginalized students in engineering. In this paper, we discuss the success of the ASI and how the institute and the IPF could be adapted specifically to support engineering faculty in their teaching, mentoring, and advising. 
    more » « less
  2. null (Ed.)
    Crowdsourced content creation like articles or slogans can be powered by crowds of volunteers or workers from paid task markets. Volunteers often have expertise and are intrinsically motivated, but are a limited resource, and are not always reliably available. On the other hand, paid crowd workers are reliably available, can be guided to produce high-quality content, but cost money. How can these different populations of crowd workers be leveraged together to power cost-effective yet high-quality crowd-powered content-creation systems? To answer this question, we need to understand the strengths and weaknesses of each. We conducted an online study where we hired paid crowd workers and recruited volunteers from social media to complete three content creation tasks for three real-world non-profit organizations that focus on empowering women. These tasks ranged in complexity from simply generating keywords or slogans to creating a draft biographical article. Our results show that paid crowds completed work and structured content following editorial guidelines more effectively. However, volunteer crowds provide content that is more original. Based on the findings, we suggest that crowd-powered content-creation systems could gain the best of both worlds by leveraging volunteers to scaffold the direction that original content should take; while having paid crowd workers structure content and prepare it for real world use. 
    more » « less
  3. In an era of ubiquitous digital interfaces and systems, technology and design practitioners must address a range of ethical dilemmas surrounding the use of persuasive design techniques and how to balance shareholder and end-user needs [2], [5]. Similarly, the increasing user concerns about unethical products and services [1] is paralleling a rise in regulatory interests in enforcing ethical design and engineering practices among technology practitioners, surfacing a need for further support. Although various scholars have developed frameworks and methods to support practitioners in navigating these challenging contexts [3], [4], often, there is a lack of resonance between these generic methods and the situated ethical complexities facing the practitioner in their everyday work. In this project, we designed and implemented a three-hour cocreation workshop with designers, engineers, and technologists to support them to develop bespoke ethics-focused action plans that are resonant with the ethical challenges they face in their everyday practice. In developing the co-creation session, we sought to answer the following questions to empower practitioners: • How can we support practitioners in developing action plans to address ethical dilemmas in their everyday work? and • How can we empower designers to design more responsibly? Building on these questions as a guide, we employed Miro, a digital whiteboard platform, to develop the co-creation experience. The final c o-creation e xperience w as d esigned w ith the visual metaphor of a “house” with four floors and multiple rooms that allowed participants to complete different tasks per room, all aimed towards the overall goal of developing participants' own personalized action plan in an interactive and collaborative way. We invited participants to share their stories and ethical dilemmas to support their creation and iteration of a personal action plan that they could later use in their everyday work context. Across the six co-creation sessions we conducted, participants (n=26) gained a better understanding of the drivers for ethical action in the context of their everyday work and developed an action plan through the co-creation workshop that enabled them to constructively engage with ethical challenges in their professional context. At the end of the session, participants were provided the action plans they created to allow them to use it in their practice. Furthermore, the co-design workshops were designed such that practitioners could take them away (the house and session guide) and run them independently at their organization or another context to support their objectives. We describe the building and the activities conducted in each floor below and will provide a pictorial representation of the house with the different floors, rooms, and activities on the poster presentation. a) First floor-Welcome, Introduction, Reflection: The first floor of the virtual house was designed to allow participants to introduce themselves and to reflect on and discuss the ethical concerns they wished to resolve during the session. b) Second floor-Shopping for ethics-focused methods: The second floor of the virtual house was designed as a “shopping” space where participants selected from range of ethicsfocused building blocks that they wish to potentially adapt or incorporate into their own action plan. They were also allowed to introduce their own methods or tools. c) Third floor-DIY Workspace: The third floor was designed as a DIY workspace to allow the participants to work in small groups to develop their own bespoke action plan based on building blocks they have gathered from their shopping trip and by using any other components they wish. The goal here was to support participants in developing methods and action plans that were resonant with their situated ethical complexities. d) Fourth floor-Gallery Space: The fourth floor was designed as a gallery to allow participants to share and discuss their action plans with other participants and to identify how their action plans could impact their future practice or educational experiences. Participants were also provided an opportunity at this stage to reflect on their experience participating in the session and provide feedback on opportunities for future improvement. 
    more » « less
  4. null (Ed.)
    The artificial intelligence (AI) industry has created new jobs that are essential to the real world deployment of intelligent systems. Part of the job focuses on labeling data for machine learning models or having workers complete tasks that AI alone cannot do. These workers are usually known as ‘crowd workers’—they are part of a large distributed crowd that is jointly (but separately) working on the tasks although they are often invisible to end-users, leading to workers often being paid below minimum wage and having limited career growth. In this chapter, we draw upon the field of human–computer interaction to provide research methods for studying and empowering crowd workers. We present our Computational Worker Leagues which enable workers to work towards their desired professional goals and also supply quantitative information about crowdsourcing markets. This chapter demonstrates the benefits of this approach and highlights important factors to consider when researching the experiences of crowd workers. 
    more » « less
  5. High-impact academic experiences, particularly research and internship experiences, have positive impacts for engineering students on engineering task self-efficacy (ETSE), a measure of students’ perception of their ability to perform technical engineering tasks. However, under- represented racial/ethnic minority students (URM) and women in engineering are found to have relatively lower self-perceptions across several academic and professional self-efficacy measures. Previous studies examined the impact of research and internship experiences on ETSE for students categorized by gender and URM status separately. The current study explores the impact of these experiences on ETSE for the intersection between these two identity categories. This study found that both non-URM and URM women that participated in research and internship experiences had lower ETSE scores than non-URM and URM men, respectively. However, URM women that participated in both research and internship experiences had a statistically similar ETSE score to non-URM men that had not participated in either. This study uses multiple linear regression to measure the association between engineering internships and student’s reported ETSE (effects of participating in research were not found to be significant across identities). Preliminary findings indicate that differences in ETSE between internship participants and non-participants are highest for URM women when compared to their counterparts. Consistent with the literature, this research finds that there is a greater positive effect in ETSE scores, as a result of participation in both research and internship experiences, for URM women than their majority counterparts. These preliminary results provide a foundation for further studies to causally investigate the link between academic experiences and self-efficacy levels for students who are underrepresented in engineering programs. Future implications of this work include the creation of targeted intervention efforts to increase support for all URM students’ access and participation in research and internship experiences. Additionally, this work seeks to challenge the bias towards monolithic interpretations of women and URM engineering students as separate categories and encourage intersectional perspectives when analyzing data to produce more inclusive results. Key Concepts: intersectionality, self-efficacy, engineering task self-efficacy, learning outcomes, academic pathways, inclusion, engineering experiences, research, internships 
    more » « less