Abstract The detection of planetary transits in the light curves of active stars, featuring correlated noise in the form of stellar variability, remains a challenge. Depending on the noise characteristics, we show that the traditional technique that consists of detrending a light curve before searching for transits alters their signal-to-noise ratio and hinders our capability to discover exoplanets transiting rapidly rotating active stars. We presentnuance, an algorithm to search for transits in light curves while simultaneously accounting for the presence of correlated noise, such as stellar variability and instrumental signals. We assess the performance ofnuanceon simulated light curves as well as on the Transiting Exoplanet Survey Satellite light curves of 438 rapidly rotating M dwarfs. For each data set, we compare our method to five commonly used detrending techniques followed by a search with the Box-Least-Squares algorithm. Overall, we demonstrate thatnuanceis the most performant method in 93% of cases, leading to both the highest number of true positives and the lowest number of false-positive detections. Although simultaneously searching for transits while modeling correlated noise is expected to be computationally expensive, we make our algorithm tractable and available as theJAX-powered Python packagenuance,allowing its use on distributed environments and GPU devices. Finally, we explore the prospects offered by thenuanceformalism and its use to advance our knowledge of planetary systems around active stars, both using space-based surveys and sparse ground-based observations.
more »
« less
The Breakthrough Listen Search for Intelligent Life: Detection and Characterization of Anomalous Transits in Kepler Lightcurves
Abstract Never before has the detection and characterization of exoplanets via transit photometry been as promising and feasible as it is now, due to the increasing breadth and sensitivity of time domain optical surveys. Past works have made use of phase-folded stellar lightcurves in order to study the properties of exoplanet transits because this provides the highest signal that a transit is present at a given period and ephemeris. Characterizing transits on an individual, rather than phase-folded, basis is much more challenging due to the often low signal-to-noise ratio of lightcurves, missing data, and low sampling rates. However, by phase folding a lightcurve we implicitly assume that all transits have the same expected properties, and lose all information about the nature and variability of the transits. We miss the natural variability in transit shapes, or even the deliberate or inadvertent modification of transit signals by an extraterrestrial civilization (for example, via laser emission or orbiting megastructures). In this work, we develop an algorithm to search stellar lightcurves for individual anomalous (in timing or depth) transits, and we report the results of that search for 218 confirmed transiting exoplanet systems from Kepler.
more »
« less
- Award ID(s):
- 1950897
- PAR ID:
- 10490606
- Publisher / Repository:
- AAS Journals
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 167
- Issue:
- 1
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Although all-sky surveys have led to the discovery of dozens of young planets, little is known about their atmospheres. Here, we present multiwavelength transit data for the super-Neptune sized exoplanet, K2-33b—the youngest (∼10 Myr) transiting exoplanet to date. We combined photometric observations of K2-33 covering a total of 33 transits spanning >2 yr, taken from K2, MEarth, the Hubble Space Telescope (HST), and Spitzer. The transit photometry spanned from the optical to the near-infrared (0.6–4.5μm), enabling us to construct a transmission spectrum of the planet. We find that the optical transit depths are nearly a factor of 2 deeper than those from the near-infrared. This difference holds across multiple data sets taken over years, ruling out issues of data analysis and unconstrained systematics. Surface inhomogeneities on the young star can reproduce some of the difference, but required spot coverage fractions (>60%) are ruled out by the observed stellar spectrum (<20%). We find a better fit to the transmission spectrum using photochemical hazes, which were predicted to be strong in young, moderate-temperature, and large-radius planets like K2-33b. A tholin haze with CO as the dominant gaseous carbon carrier in the atmosphere can reasonably reproduce the data with small or no stellar surface inhomogeneities, consistent with the stellar spectrum. The HST data quality is insufficient for the detection of any molecular features. More observations would be required to fully characterize the hazes and spot properties and confirm the presence of CO suggested by current data.more » « less
-
Abstract Early in their lives, planets endure extreme amounts of ionizing radiation from their host stars. For planets with primordial hydrogen and helium-rich envelopes, this can lead to substantial mass loss. Direct observations of atmospheric escape in young planetary systems can help elucidate this critical stage of planetary evolution. In this work, we search for metastable helium absorption—a tracer of tenuous gas in escaping atmospheres—during transits of three planets orbiting the young solar analog V1298 Tau. We characterize the stellar helium line using HET/HPF, and find that it evolves substantially on timescales of days to months. The line is stable on hour-long timescales except for one set of spectra taken during the decay phase of a stellar flare, where absoprtion increased with time. Utilizing a beam-shaping diffuser and a narrowband filter centered on the helium feature, we observe four transits with Palomar/WIRC: two partial transits of planet d ( P = 12.4 days), one partial transit of planet b ( P = 24.1 days), and one full transit of planet c ( P = 8.2 days). We do not detect the transit of planet c, and we find no evidence of excess absorption for planet b, with Δ R b / R ⋆ < 0.019 in our bandpass. We find a tentative absorption signal for planet d with Δ R d / R ⋆ = 0.0205 ± 0.054, but the best-fit model requires a substantial (−100 ± 14 minutes) transit-timing offset on a two-month timescale. Nevertheless, our data suggest that V1298 Tau d may have a high present-day mass-loss rate, making it a priority target for follow-up observations.more » « less
-
Abstract Ultra-hot Jupiters (UHJs) are among the best targets for atmospheric characterization at high spectral resolution. Resolving their transmission spectra as a function of orbital phase offers a unique window into the 3D nature of these objects. In this work, we present three transits of the UHJ WASP-121b observed with Gemini-S/IGRINS. For the first time, we measure the phase-dependent absorption signals of CO and H2O in the atmosphere of an exoplanet, and we find that they are different. While the blueshift of CO increases during the transit, the absorption lines of H2O become less blueshifted with phase, and even show a redshift in the second half of the transit. These measurements reveal the distinct spatial distributions of both molecules across the atmospheres of UHJs. Also, we find that the H2O signal is absent in the first quarter of the transit, potentially hinting at cloud formation on the evening terminator of WASP-121b. To further interpret the absorption trails of CO and H2O, as well as the Doppler shifts of Fe previously measured with VLT/ESPRESSO, we compare the data to simulated transits of WASP-121b. To this end, we post-process the outputs of the global circulation models with a 3D Monte-Carlo radiative transfer code. Our analysis shows that the atmosphere of WASP-121b is subject to atmospheric drag, as previously suggested by small hotspot offsets inferred from phase-curve observations. Our study highlights the importance of phase-resolved spectroscopy in unravelling the complex atmospheric structure of UHJs and sets the stage for further investigations into their chemistry and dynamics.more » « less
-
Abstract Periodic variables illuminate the physical processes of stars throughout their lifetime. Wide-field surveys continue to increase our discovery rates of periodic variable stars. Automated approaches are essential to identify interesting periodic variable stars for multiwavelength and spectroscopic follow-up. Here we present a novel unsupervised machine-learning approach to hunt for anomalous periodic variables using phase-folded light curves presented in the Zwicky Transient Facility Catalogue of Periodic Variable Stars by Chen et al. We use a convolutional variational autoencoder to learn a low-dimensional latent representation, and we search for anomalies within this latent dimension via an isolation forest. We identify anomalies with irregular variability. Most of the top anomalies are likely highly variable red giants or asymptotic giant branch stars concentrated in the Milky Way galactic disk; a fraction of the identified anomalies are more consistent with young stellar objects. Detailed spectroscopic follow-up observations are encouraged to reveal the nature of these anomalies.more » « less
An official website of the United States government

