Nanophotonic structures have versatile applications including solar cells, antireflective coatings, electromagnetic interference shielding, optical filters, and light emitting diodes. To design and understand these nanophotonic structures, electrodynamic simulations are essential. These simulations enable us to model electromagnetic fields over time and calculate optical properties. In this work, we introduce frameworks and benchmarks to evaluate nanophotonic structures in the context of parametric structure design problems. The benchmarks are instrumental in assessing the performance of optimization algorithms and identifying an optimal structure based on target optical properties. Moreover, we explore the impact of varying grid sizes in electrodynamic simulations, shedding light on how evaluation fidelity can be strategically leveraged in enhancing structure designs.
more »
« less
Multi-BOWS: multi-fidelity multi-objective Bayesian optimization with warm starts for nanophotonic structure design
The design of optical devices is a complex and time-consuming process. To simplify this process, we present a novel framework of multi-fidelity multi-objective Bayesian optimization with warm starts, called Multi-BOWS. This approach automatically discovers new nanophotonic structures by managing multiple competing objectives and utilizing multi-fidelity evaluations during the design process. We employ our Multi-BOWS method to design an optical device specifically for transparent electromagnetic shielding, a challenge that demands balancing visible light transparency and effective protection against electromagnetic waves. Our approach leverages the understanding that simulations with a coarser mesh grid are faster, albeit less accurate than those using a denser mesh grid. Unlike the earlier multi-fidelity multi-objective method, Multi-BOWS begins with faster, less accurate evaluations, which we refer to as “warm-starting,” before shifting to a dense mesh grid to increase accuracy. As a result, Multi-BOWS demonstrates 3.2–89.9% larger normalized area under the Pareto frontier, which measures a balance between transparency and shielding effectiveness, than low-fidelity only and high-fidelity only techniques for the nanophotonic structures studied in this work. Moreover, our method outperforms an existing multi-fidelity method by obtaining 0.5–10.3% larger normalized area under the Pareto frontier for the structures of interest.
more »
« less
- PAR ID:
- 10490622
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Digital Discovery
- ISSN:
- 2635-098X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
NA (Ed.)This work addresses a Multi-Objective Shortest Path Problem (MO-SPP) on a graph where the goal is to find a set of Pareto-optimal solutions from a start node to a destination in the graph. A family of approaches based on MOA* have been developed to solve MO-SPP in the literature. Typically, these approaches maintain a “frontier” set at each node during the search process to keep track of the non-dominated, partial paths to reach that node. This search process becomes computationally expensive when the number of objectives increases as the number of Pareto-optimal solutions becomes large. In this work, we introduce a new method to efficiently maintain these frontiers for multiple objectives by incrementally constructing balanced binary search trees within the MOA* search framework. We first show that our approach correctly finds the Pareto-optimal front, and then provide extensive simulation results for problems with three, four and five objectives to show that our method runs faster than existing techniques by up to an order of magnitude.more » « less
-
The design of machine learning systems often requires trading off different objectives, for example, prediction error and energy consumption for deep neural networks (DNNs). Typically, no single design performs well in all objectives; therefore, finding Pareto-optimal designs is of interest. The search for Pareto-optimal designs involves evaluating designs in an iterative process, and the measurements are used to evaluate an acquisition function that guides the search process. However, measuring different objectives incurs different costs. For example, the cost of measuring the prediction error of DNNs is orders of magnitude higher than that of measuring the energy consumption of a pre-trained DNN as it requires re-training the DNN. Current state-of-the-art methods do not consider this difference in objective evaluation cost, potentially incurring expensive evaluations of objective functions in the optimization process. In this paper, we develop a novel decoupled and cost-aware multi-objective optimization algorithm, which we call Flexible Multi-Objective Bayesian Optimization (FlexiBO) to address this issue. For evaluating each design, FlexiBO selects the objective with higher relative gain by weighting the improvement of the hypervolume of the Pareto region with the measurement cost of each objective. This strategy, therefore, balances the expense of collecting new information with the knowledge gained through objective evaluations, preventing FlexiBO from performing expensive measurements for little to no gain. We evaluate FlexiBO on seven state-of-the-art DNNs for image recognition, natural language processing (NLP), and speech-to-text translation. Our results indicate that, given the same total experimental budget, FlexiBO discovers designs with 4.8% to 12.4% lower hypervolume error than the best method in state-of-the-art multi-objective optimization.more » « less
-
Recent developments in the computational automated design of electromagnetic devices, otherwise known as inverse design, have significantly enhanced the design process for nanophotonic systems. Inverse design can both reduce design time considerably and lead to high-performance, nonintuitive structures that would otherwise have been impossible to develop manually. Despite the successes enjoyed by structure optimization techniques, most approaches leverage electromagnetic solvers that require significant computational resources and suffer from slow convergence and numerical dispersion. Recently, a fast simulation and boundary-based inverse design approach based on boundary integral equations was demonstrated for two-dimensional nanophotonic problems. In this work, we introduce a new full-wave three-dimensional simulation and boundary-based optimization framework for nanophotonic devices also based on boundary integral methods, which achieves high accuracy even at coarse mesh discretizations while only requiring modest computational resources. The approach has been further accelerated by leveraging GPU computing, a sparse block-diagonal preconditioning strategy, and a matrix-free implementation of the discrete adjoint method. As a demonstration, we optimize three different devices: a 1:2 1550 nm power splitter and two nonadiabatic mode-preserving waveguide tapers. To the best of our knowledge, the tapers, which span 40 wavelengths in the silicon material, are the largest silicon photonic waveguiding devices to have been optimized using full-wave 3D solution of Maxwell’s equations.more » « less
-
null (Ed.)The dynamic stall phenomenon produces adverse aerodynamic loading, which negatively affects the structural strength and life of aerodynamic systems. Aerodynamic shape optimization (ASO) provides a practical approach for delaying and mitigating dynamic stall characteristics without the addition of an auxiliary system. A typical ASO investigation requires multiple evaluations of accurate but time-consuming computational fluid dynamics (CFD) simulations. In the case of dynamic stall, unsteady CFD simulations are required for airfoil shape evaluation; combining it with high-dimensions of airfoil shape parameterization renders the ASO investigation computationally costly. In this study, metamodel-based optimization (MBO) is proposed using the multifidelity modeling (MFM) technique to efficiently conduct ASO investigation for computationally expensive dynamic stall cases. MFM methods combine data from accurate high-fidelity (HF) simulations and fast low-fidelity (LF) simulations to provide accurate and fast predictions. In particular, Cokriging regression is used for approximating the objective and constraint functions. The airfoil shape is parameterized using six PARSEC parameters. The objective and constraint functions are evaluated for a sinusoidally oscillating airfoil with the unsteady Reynolds-averaged Navier-Stokes equations at a Reynolds number of 135,000, Mach number of 0.1, and reduced frequency of 0.05. The initial metamodel is generated using 220 LF and 20 HF samples. The metamodel is then sequentially refined using the expected improvement infill criteria and validated with the normalized root mean square error. The refined metamodel is utilized for finding the optimal design. The optimal airfoil shape shows higher thickness, larger leading-edge radius, and an aft camber compared to baseline (NACA 0012). The optimal shape delays the dynamic stall occurrence by 3 degrees and reduces the peak aerodynamic coefficients. The performance of the MFM method is also compared with the single-fidelity metamodeling method using HF samples. Both the approaches produced similar optimal shapes; however, the optimal shape from MFM achieved a minimum objective function value while more closely satisfying the constraint at a computational cost saving of around 41%.more » « less
An official website of the United States government

