Cellular heterogeneity, an inherent feature of biological systems, plays a critical role in processes such as development, immune response, and disease progression. Human mesenchymal stem cells (hMSCs) exemplify this heterogeneity due to their multi-lineage differentiation potential. However, their inherent variability complicates clinical use, and there is no universally accepted method for detecting and quantifying cell population heterogeneity. Dielectrophoresis (DEP) has emerged as a powerful electrokinetic technique for characterizing and manipulating cells based on their dielectric properties, offering label-free analysis capabilities. Quantitative information from the DEP spectrum, such as transient slope, measure cells’ transition between negative and positive DEP behaviors. In this study, we employed DEP to estimate transient slope of various cell populations, including relatively homogeneous HEK-293 cells, heterogeneous hMSCs, and cancer cells (PC3 and DU145). Our analysis encompassed hMSCs derived from bone marrow, adipose, and umbilical cord tissue, to capture tissue-specific heterogeneity. Transient slope was assessed using two methods, involving linear trendline fitting to different low-frequency regions of the DEP spectrum. We found that transient slope serves as a reliable indicator of cell population heterogeneity, with more heterogeneous populations exhibiting lower transient slopes and higher standard deviations. Validation using cell morphology, size, and stemness further supported the utility of transient slope as a heterogeneity metric. This label-free approach holds promise for advancing cell sorting, biomanufacturing, and personalized medicine.
more »
« less
High-Frequency Dielectrophoresis Reveals That Distinct Bio-Electric Signatures of Colorectal Cancer Cells Depend on Ploidy and Nuclear Volume
Aneuploidy, or an incorrect chromosome number, is ubiquitous among cancers. Whole-genome duplication, resulting in tetraploidy, often occurs during the evolution of aneuploid tumors. Cancers that evolve through a tetraploid intermediate tend to be highly aneuploid and are associated with poor patient prognosis. The identification and enrichment of tetraploid cells from mixed populations is necessary to understand the role these cells play in cancer progression. Dielectrophoresis (DEP), a label-free electrokinetic technique, can distinguish cells based on their intracellular properties when stimulated above 10 MHz, but DEP has not been shown to distinguish tetraploid and/or aneuploid cancer cells from mixed tumor cell populations. Here, we used high-frequency DEP to distinguish cell subpopulations that differ in ploidy and nuclear size under flow conditions. We used impedance analysis to quantify the level of voltage decay at high frequencies and its impact on the DEP force acting on the cell. High-frequency DEP distinguished diploid cells from tetraploid clones due to their size and intracellular composition at frequencies above 40 MHz. Our findings demonstrate that high-frequency DEP can be a useful tool for identifying and distinguishing subpopulations with nuclear differences to determine their roles in disease progression.
more »
« less
- Award ID(s):
- 2222933
- PAR ID:
- 10490631
- Publisher / Repository:
- Micromachines
- Date Published:
- Journal Name:
- Micromachines
- Volume:
- 14
- Issue:
- 9
- ISSN:
- 2072-666X
- Page Range / eLocation ID:
- 1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The efficient isolation of viable and intact circulating tumor cells (CTCs) from blood is critical for the genetic analysis of cancer cells, prediction of cancer progression, development of drugs, and evaluation of therapeutic treatments. While conventional cell separation devices utilize the size difference between CTCs and other blood cells, they fail to separate CTCs from white blood cells (WBCs) due to significant size overlap. To overcome this issue, we present a novel approach that combines curved contraction–expansion (CE) channels with dielectrophoresis (DEP) and inertial microfluidics to isolate CTCs from WBCs regardless of size overlap. This label‐free and continuous separation method utilizes dielectric properties and size variation of cells for the separation of CTCs from WBCs. The results demonstrate that the proposed hybrid microfluidic channel can effectively isolate A549 CTCs from WBCs regardless of their size with a throughput of 300 μL/min, achieving a high separation distance of 233.4 μm at an applied voltage of 50 Vp–p. The proposed method allows for the modification of cell migration characteristics by controlling the number of CE sections of the channel, applied voltage, applied frequency, and flow rate. With its unique features of a single‐stage separation, simple design, and tunability, the proposed method provides a promising alternative to the existing label‐free cell separation techniques and may have a wide range of applications in biomedicine.more » « less
-
Studying specific subpopulations of cancer-derived extracellular vesicles (EVs) could help reveal their role in cancer progression. In cancer, an increase in reactive oxygen species (ROS) happens which results in lipid peroxidation with a major product of 4-hydroxynonenal (HNE). Adduction by HNE causes alteration to the structure of proteins, leading to loss of function. Blebbing of EVs carrying these HNE-adducted proteins as a cargo or carrying HNE-adducted on EV membrane are methods for clearing these molecules by the cells. We have referred to these EVs as Redox EVs. Here, we utilize a surface tension-mediated extraction process, termed exclusion-based sample preparation (ESP), for the rapid and efficient isolation of intact Redox EVs, from a mixed population of EVs derived from human glioblastoma cell line LN18. After optimizing different parameters, two populations of EVs were analyzed, those isolated from the sample (Redox EVs) and those remaining in the original sample (Remaining EVs). Electron microscopic imaging was used to confirm the presence of HNE adducts on the outer leaflet of Redox EVs. Moreover, the population of HNE-adducted Redox EVs shows significantly different characteristics to those of Remaining EVs including smaller size EVs and a more negative zeta potential EVs. We further treated glioblastoma cells (LN18), radiation-resistant glioblastoma cells (RR-LN18), and normal human astrocytes (NHA) with both Remaining and Redox EV populations. Our results indicate that Redox EVs promote the growth of glioblastoma cells, likely through the production of H2O2, and cause injury to normal astrocytes. In contrast, Remaining EVs have minimal impact on the viability of both glioblastoma cells and NHA cells. Thus, isolating a subpopulation of EVs employing ESP-based immunoaffinity could pave the way for a deeper mechanistic understanding of how subtypes of EVs, such as those containing HNE-adducted proteins, induce biological changes in the cells that take up these EVs.more » « less
-
ABSTRACT Bivalve transmissible neoplasias (BTNs) are leukemia-like cancers found in at least 10 bivalve species, in which the cancer cells themselves transfer from one individual to another, spreading as an unusual form of infectious disease. Before the infectious etiology was known, there were reports of lethality and outbreaks of cancer in the soft-shell clam (Mya arenaria) on the east coast of North America. Using sensitive and specific qPCR assays, we followed the progression of BTN in naturally-infected soft-shell clams from Maine, USA. We observed variable outcomes, with about half of clams (9/21) progressing to high levels of cancer and death, about half exhibiting long-term non-progression (11/21), and a single animal showing regression of cancer. We also observe a significant decrease in survival in animals that progress to >10% cancer in their hemolymph, while we see no effect on survival in clams with BTN that are long-term non-progressors. As most bivalves do not physically contact each other, and BTN cells can survive in seawater, it has been proposed that BTN is spread through release of cancer cells into the water. We used qPCR to detect BTN-specific DNA in environmental DNA (eDNA) in the tanks of animals throughout this experiment. We show that cancer cell release can be detected in tank water of most clams with >24% cancer in their hemolymph, but not below this level. Cancer cell release is variable and occurs in bursts, but above 24% detection in eDNA correlates with progression of cancer in the hemolymph. This study demonstrates both the lethality of BTN and the presence of a block to the progression of BTN in a large portion of clams in a population with enzootic disease. This also further supports the hypothesis that BTN cells transmit through seawater and provides insights into the mechanisms of the transmission dynamics.more » « less
-
Abstract Circulating tumor cells (CTCs) have been proven to have significant prognostic, diagnostic, and clinical values in early‐stage cancer detection and treatment. The efficient separation of CTCs from peripheral blood can ensure intact and viable CTCs and can, thus, give proper genetic characterization and drug innovation. In this study, continuous and high‐throughput separation of MDA‐231 CTCs from overlapping sized white blood cells (WBCs) is achieved by modifying inertial cell focusing with dielectrophoresis (DEP) in a single‐stage microfluidic platform by numeric simulation. The DEP is enabled by embedding interdigitated electrodes with alternating field control on a serpentine microchannel to avoid creating two‐stage separation. Rather than using the electrokinetic migration of cells which slows down the throughput, the system leverages the inertial microfluidic flow to achieve high‐speed continuous separation. The cell migration and cell positioning characteristics are quantified through coupled physics analyses to evaluate the effects of the applied voltages and Reynolds numbers (Re) on the separation performance. The results indicate that the introduction of DEP successfully migrates WBCs away from CTCs and that separation of MDA‐231 CTCs from similar sized WBCs at a highReof 100 can be achieved with a low voltage of magnitude 4 ×106 V/m. Additionally, the viability of MDA‐231 CTCs is expected to be sustained after separation due to the short‐term DEP exposure. The developed technique could be exploited to design active microchips for high‐throughput separation of mixed cell beads despite their significant size overlap, using DEP‐modified inertial focusing controlled simply by adjusting the applied external field.more » « less
An official website of the United States government

