skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Transient Slope: A Metric for Assessing Heterogeneity from the Dielectrophoresis Spectrum
Cellular heterogeneity, an inherent feature of biological systems, plays a critical role in processes such as development, immune response, and disease progression. Human mesenchymal stem cells (hMSCs) exemplify this heterogeneity due to their multi-lineage differentiation potential. However, their inherent variability complicates clinical use, and there is no universally accepted method for detecting and quantifying cell population heterogeneity. Dielectrophoresis (DEP) has emerged as a powerful electrokinetic technique for characterizing and manipulating cells based on their dielectric properties, offering label-free analysis capabilities. Quantitative information from the DEP spectrum, such as transient slope, measure cells’ transition between negative and positive DEP behaviors. In this study, we employed DEP to estimate transient slope of various cell populations, including relatively homogeneous HEK-293 cells, heterogeneous hMSCs, and cancer cells (PC3 and DU145). Our analysis encompassed hMSCs derived from bone marrow, adipose, and umbilical cord tissue, to capture tissue-specific heterogeneity. Transient slope was assessed using two methods, involving linear trendline fitting to different low-frequency regions of the DEP spectrum. We found that transient slope serves as a reliable indicator of cell population heterogeneity, with more heterogeneous populations exhibiting lower transient slopes and higher standard deviations. Validation using cell morphology, size, and stemness further supported the utility of transient slope as a heterogeneity metric. This label-free approach holds promise for advancing cell sorting, biomanufacturing, and personalized medicine.  more » « less
Award ID(s):
2048221
PAR ID:
10577604
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Biophysica
Volume:
4
Issue:
4
ISSN:
2673-4125
Page Range / eLocation ID:
695 to 710
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Human mesenchymal stem cells (hMSCs) have gained traction in transplantation therapy due to their immunomodulatory, paracrine, immune‐evasive, and multipotent differentiation potential. The inherent heterogeneity of hMSCs poses a challenge for therapeutic treatments and necessitates the identification of robust biomarkers to ensure reproducibility in both in vivo and in vitro experiments. In this study, we utilized dielectrophoresis (DEP), a label‐free electrokinetic phenomenon, to investigate the heterogeneity of hMSCs derived from bone marrow (BM) and adipose tissue (AD). The electrical properties of BM‐hMSCs were compared to homogeneous mouse fibroblasts (NIH‐3T3), human fibroblasts (WS1), and human embryonic kidney cells (HEK‐293). The DEP profile of BM‐hMSCs differed most from HEK‐293 cells. We compared the DEP profiles of BM‐hMSCs and AD‐hMSCs and found that they have similar membrane capacitances, differing cytoplasm conductivity, and transient slopes. Inducing both populations to differentiate into adipocyte and osteoblast cells revealed that they behave differently in response to differentiation‐inducing cytokines. Histology and reverse transcription‐quantitative polymerase chain reaction (RT‐qPCR) analyses of the differentiation‐related genes revealed differences in heterogeneity between BM‐hMSCs and AD‐hMSCs. The differentiation profiles correlate well with the DEP profiles developed and indicate differences in the heterogeneity of BM‐hMSCs and AD‐hMSCs. Our results demonstrate that using DEP, membrane capacitance, cytoplasm conductivity, and transient slope can uniquely characterize the inherent heterogeneity of hMSCs to guide robust and reproducible stem cell transplantation therapies. 
    more » « less
  2. Aneuploidy, or an incorrect chromosome number, is ubiquitous among cancers. Whole-genome duplication, resulting in tetraploidy, often occurs during the evolution of aneuploid tumors. Cancers that evolve through a tetraploid intermediate tend to be highly aneuploid and are associated with poor patient prognosis. The identification and enrichment of tetraploid cells from mixed populations is necessary to understand the role these cells play in cancer progression. Dielectrophoresis (DEP), a label-free electrokinetic technique, can distinguish cells based on their intracellular properties when stimulated above 10 MHz, but DEP has not been shown to distinguish tetraploid and/or aneuploid cancer cells from mixed tumor cell populations. Here, we used high-frequency DEP to distinguish cell subpopulations that differ in ploidy and nuclear size under flow conditions. We used impedance analysis to quantify the level of voltage decay at high frequencies and its impact on the DEP force acting on the cell. High-frequency DEP distinguished diploid cells from tetraploid clones due to their size and intracellular composition at frequencies above 40 MHz. Our findings demonstrate that high-frequency DEP can be a useful tool for identifying and distinguishing subpopulations with nuclear differences to determine their roles in disease progression. 
    more » « less
  3. Beskok, A. (Ed.)
    Dielectrophoresis (DEP) is a powerful tool for label-free sorting of cells, even those with subtle differences in morphological and dielectric properties. Nevertheless, a major limitation is that most existing DEP techniques can efficiently sort cells only at low throughputs (<1 mL h−1). Here, we demonstrate that the integration of a three-dimensional (3D) coupled hydrodynamic-DEP cell pre-focusing module upstream of the main DEP sorting region enables cell sorting with a 10-fold increase in throughput compared to conventional DEP approaches. To better understand the key principles and requirements for high-throughput cell separation, we present a comprehensive theoretical model to study the scaling of hydrodynamic and electrostatic forces on cells at high flow rate regimes. Based on the model, we show that the critical cell-to-electrode distance needs to be ≤10 µm for efficient cell sorting in our proposed microfluidic platform, especially at flow rates ≥ 1 mL h−1. Based on those findings, a computational fluid dynamics model and particle tracking analysis were developed to find optimum operation parameters (e.g., flow rate ratios and electric fields) of the coupled hydrodynamic-DEP 3D focusing module. Using these optimum parameters, we experimentally demonstrate live/dead K562 cell sorting at rates as high as 10 mL h−1 (>150,000 cells min−1) with 90% separation purity, 85% cell recovery, and no negative impact on cell viability. 
    more » « less
  4. Abstract Circulating Tumor Cells (CTCs), which migrate from original sites in a body to distant organs through blood, are a key factor in cancer detection. Emerging Label-free techniques owing to their inherent advantage to preserve characteristics of sorted cells and low consumption of samples can be promising to the prediction of cancer progression and metastasis research. Deterministic Lateral Displacement (DLD) is one of the label-free separation techniques employing a specific arrangement of micro-posts for continuous separation of suspended cells in a buffer based on the size of cells. Separation based solely on size is challenging since the size distributions of CTCs might overlap with those of normal blood cells. To address this problem, DLD can be combined with dielectrophoresis (DEP) technique which is the phenomenon of particle movement in a non-uniform electric field owing to the polarization effect. Although, DLD devices employ the laminar flow in low Reynolds number (Re) fluid flow due to predictability of such flow regimes, they should be improved to work in higher Re flow regime so as to attain high throughput devices. In this paper, a particle tracing simulation is developed to study the effects of different post shapes, shift fraction of micropost arrays, and dielectrophoresis forces on separation of CTCs from peripheral blood cells. Our numerical model and results provide a groundwork for design and fabrication of high-throughput DLD-DEP devices for improvement of CTC separation. 
    more » « less
  5. Abstract Adult pluripotent stem cells are found in diverse animals, including cnidarians, acoels, and planarians, and confer remarkable abilities such as whole-body regeneration. The mechanisms by which these pluripotent stem cells orchestrate the replacement of all lost cell types, however, remains poorly understood. Underlying heterogeneity within the stem cell populations of these animals is often obscured when focusing on certain tissue types or life history stages, which tend to have indistinguishable spatial expression patterns of stem cell marker genes. Here, we focus on the adult pluripotent stem cells (i-cells) ofHydractinia symbiolongicarpus, a colonial marine cnidarian with distinct polyp types and stolonal tissue. Recently, a single-cell expression atlas was generated forH. symbiolongicarpuswhich revealed two distinct clusters with i-cell signatures, potentially representing heterogeneity within this species’ stem cell population. Considering this finding, we investigated eight new putative stem cell marker genes from the atlas including five expressed in both i-cell clusters (Pcna,Nop58,Mcm4,Ubr7, andUhrf1) and three expressed in one cluster or the other (Pter, FoxQ2-like,andZcwpw1). We characterized their expression patterns in various contexts–feeding and sexual polyps, juvenile feeding polyps, stolon, and during feeding polyp head regeneration–revealing context-dependent gene expression patterns and a transcriptionally dynamic i-cell population. We uncover previously unknown differences within the i-cell population ofHydractiniaand demonstrate that its colonial nature serves as an excellent system for investigating and visualizing heterogeneity in pluripotent stem cells. 
    more » « less