With the increasing use of Li batteries for storage, their safety issues and energy densities are attracting considerable attention. Recently, replacing liquid organic electrolytes with solid‐state electrolytes (SSE) has been hailed as the key to developing safe and high‐energy‐density Li batteries. In particular, Li1+
Additive manufacturing of solid-state batteries is advantageous for improving the power density by increasing the geometric complexity of battery components, such as electrodes and electrolytes. In the present study, bulk three-dimensional Li1+
- PAR ID:
- 10490654
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Energy
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2515-7655
- Format(s):
- Medium: X Size: Article No. 025006
- Size(s):
- Article No. 025006
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract x Alx Ti2−x (PO4)3(LATP) has been identified as a very attractive SSE for Li batteries due to its excellent electrochemical stability, low production costs, and good chemical compatibility. However, interfacial reactions with electrodes and poor thermal stability at high temperatures severely restrict the practical use of LATP in solid‐state batteries (SSB). Herein, a systematic review of recent advances in LATP for SSBs is provided. This review starts with a brief introduction to the development history of LATP and then summarizes its structure, ion transport mechanism, and synthesis methods. Challenges (e.g., intrinsic brittleness, interfacial resistance, and compatibility) and corresponding solutions (ionic substitution, additives, protective layers, composite electrolytes, etc.) that are critical for practical applications are then discussed. Last, an outlook on the future research direction of LATP‐based SSB is provided. -
Abstract All‐solid‐state sodium batteries, using solid electrolyte and abundant sodium resources, show great promise for safe, low‐cost, and large‐scale energy storage applications. The exploration of novel solid electrolytes is critical for the room temperature operation of all‐solid‐state Na batteries. An ideal solid electrolyte must have high ionic conductivity, hold outstanding chemical and electrochemical stability, and employ low‐cost synthetic methods. Achieving the combination of these properties is a grand challenge for the synthesis of sulfide‐based solid electrolytes. Design of the solid electrolyte Na3SbS4is described, realizing excellent air stability and an economic synthesis based on hard and soft acid and base (HSAB) theory. This new solid electrolyte also exhibits a remarkably high ionic conductivity of 1 mS cm−1at 25 °C and ideal compatibility with a metallic sodium anode.
-
Tantalum‐doped lithium lanthanum zirconate garnet (Li7−
x La3Zr2−x Tax O12[LLZTO]) has received interest as a solid electrolyte for solid‐state lithium batteries due to its good electrochemical properties and ionic conductivity. However, the source of discrepancies for reported values of ionic conductivity in nominally or nearly equivalent compositions of LLZTO is not completely clear. Herein, synthesis‐related factors that may contribute to the differences in performance of garnet electrolytes are systematically characterized. The conductivity of samples with composition Li6.4La3Zr1.4Ta0.6O12prepared by various methods including solid‐state reaction (SSR), combustion, and molten salt synthesis is compared. Varying levels of elemental inhomogeneity, comprising a variation in Ta and Zr content on the level of individual LLZTO particles, are identified. The elemental inhomogeneity is found to be largely preserved even after high‐temperature sintering and correlated with reduced ionic conductivity. It is shown that the various synthesis and processing‐related variables in each of the preparation methods play a role in these compositional variations, and that even LLZTO synthesized via conventional, high‐temperature SSR can exhibit substantial variability in local composition. However, by improving reagent mixing and using LLZTO powder with low agglomeration and small particle size distribution, the compositional uniformity, and hence, ionic conductivity, of sintered garnet electrolytes can be improved. -
Abstract All‐solid‐state rechargeable sodium (Na)‐ion batteries are promising for inexpensive and high‐energy‐density large‐scale energy storage. In this contribution, new Na solid electrolytes, Na3−
y PS4−x Clx , are synthesized with a strategic approach, which allows maximum substitution of Cl for S (x = 0.2) without significant compromise of structural integrity or Na deficiency. A maximum conductivity of 1.96 mS cm−1at 25 °C is achieved for Na3.0PS3.8Cl0.2, which is two orders of magnitude higher compared with that of tetragonal Na3PS4(t‐Na3PS4). The activation energy (E a) is determined to be 0.19 eV. Ab initio molecular dynamics simulations shed light on the merit of maximizing Cl‐doping while maintaining low Na deficiency in enhanced Na‐ion conduction. Solid‐state nuclear magnetic resonance (NMR) characterizations confirm the successful substitution of Cl for S and the resulting change of P oxidation state from 5+ to 4+, which is also verified by spin moment analysis. Ion transport pathways are determined with a tracer‐exchange NMR method. The functional detects that promote Na ‐ion transport are maximized for further improvement in ionic conductivity. Full‐cell performance is demonstrated using Na/Na3.0PS3.8Cl0.2/Na3V2(PO4)3with a reversible capacity of ≈100 mAh g‐1at room temperature. -
Abstract The performance of all‐solid‐state batteries (ASSBs) relies on the Li+transport and stability characteristics of solid electrolytes (SEs). Li3PS4is notable for its stability against lithium metal, yet its ionic conductivity remains a limiting factor. This study leverages local structural disorder via O substitution to achieve an ionic conductivity of 1.38 mS cm−1with an activation energy of 0.34 eV for Li3PS4−
x Ox (x = 0.31). Optimal O substitution transforms Li+transport from 2D to 3D pathways with increased ion mobility. Li3PS3.69O0.31exhibits improvements in the critical current density and stability against Li metal and retains its electrochemical stability window compared with Li3PS4. The practical implementation of Li3PS3.69O0.31in ASSBs half‐cells, particularly when coupled with TiS2as the cathode active material, demonstrates substantially enhanced capacity and rate performance. This work elucidates the utility of introducing local structural disorder to ameliorate SE properties and highlights the benefits of strategically combining the inherent strengths of sulfides and oxides via creating oxysulfide SEs.