skip to main content


Title: Manipulating ionic conductivity through chemical modifications in solid-state electrolytes prepared with binderless laser powder bed fusion processing
Abstract

Additive manufacturing of solid-state batteries is advantageous for improving the power density by increasing the geometric complexity of battery components, such as electrodes and electrolytes. In the present study, bulk three-dimensional Li1+xAlxTi2−x(PO4)3(LATP) electrolyte samples were prepared using the laser powder bed fusion (L-PBF) additive manufacturing method. Li3PO4(LPO) was added to LATP to compensate for lithium vaporization during processing. Chemical compositions included 0, 1, 3, and 5 wt. % LPO. Resulting ionic conductivity values ranged from 1.4 × 10−6–6.4 × 10−8S cm−1, with the highest value for the sample with a chemical composition of 3 wt. % LPO. Microstructural features were carefully measured for each chemical composition and correlated with each other and with ionic conductivity. These features and their corresponding ranges include: porosity (ranging from 5% to 19%), crack density (0.09–0.15 mm mm−2), concentration of residual LPO (0%–16%), and concentration and Feret diameter of secondary phases, AlPO4 (11%–18%, 0.40–0.61µm) and TiO2 (9%–11%, 0.50–0.78). Correlations between the microstructural features and ionic conductivity ranged from −0.88 to 0.99. The strongest negative correlation was between crack density and ionic conductivity (−0.88), confirming the important role that processing defects play in limiting the performance of bulk solid-state electrolytes. The strongest positive correlation was between the concentration of AlPO4 and ionic conductivity (0.99), which is attributed to AlPO4 acting as a sintering aid and the role it plays in reducing the crack density. Our results indicate that additions of LPO can be used to balance competing microstructural features to design bulk three-dimensional LATP samples with improved ionic conductivity. As such, refinement of the chemical composition offers a promising approach to improving the processability and performance of functional ceramics prepared using binderless, laser-based additive manufacturing for solid-state battery applications.

 
more » « less
PAR ID:
10490654
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Energy
Volume:
6
Issue:
2
ISSN:
2515-7655
Format(s):
Medium: X Size: Article No. 025006
Size(s):
Article No. 025006
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With the increasing use of Li batteries for storage, their safety issues and energy densities are attracting considerable attention. Recently, replacing liquid organic electrolytes with solid‐state electrolytes (SSE) has been hailed as the key to developing safe and high‐energy‐density Li batteries. In particular, Li1+xAlxTi2−x(PO4)3(LATP) has been identified as a very attractive SSE for Li batteries due to its excellent electrochemical stability, low production costs, and good chemical compatibility. However, interfacial reactions with electrodes and poor thermal stability at high temperatures severely restrict the practical use of LATP in solid‐state batteries (SSB). Herein, a systematic review of recent advances in LATP for SSBs is provided. This review starts with a brief introduction to the development history of LATP and then summarizes its structure, ion transport mechanism, and synthesis methods. Challenges (e.g., intrinsic brittleness, interfacial resistance, and compatibility) and corresponding solutions (ionic substitution, additives, protective layers, composite electrolytes, etc.) that are critical for practical applications are then discussed. Last, an outlook on the future research direction of LATP‐based SSB is provided.

     
    more » « less
  2. Abstract

    All‐solid‐state sodium batteries, using solid electrolyte and abundant sodium resources, show great promise for safe, low‐cost, and large‐scale energy storage applications. The exploration of novel solid electrolytes is critical for the room temperature operation of all‐solid‐state Na batteries. An ideal solid electrolyte must have high ionic conductivity, hold outstanding chemical and electrochemical stability, and employ low‐cost synthetic methods. Achieving the combination of these properties is a grand challenge for the synthesis of sulfide‐based solid electrolytes. Design of the solid electrolyte Na3SbS4is described, realizing excellent air stability and an economic synthesis based on hard and soft acid and base (HSAB) theory. This new solid electrolyte also exhibits a remarkably high ionic conductivity of 1 mS cm−1at 25 °C and ideal compatibility with a metallic sodium anode.

     
    more » « less
  3.  
    more » « less
  4. Abstract

    All‐solid‐state rechargeable sodium (Na)‐ion batteries are promising for inexpensive and high‐energy‐density large‐scale energy storage. In this contribution, new Na solid electrolytes, Na3−yPS4−xClx, are synthesized with a strategic approach, which allows maximum substitution of Cl for S (x= 0.2) without significant compromise of structural integrity or Na deficiency. A maximum conductivity of 1.96 mS cm−1at 25 °C is achieved for Na3.0PS3.8Cl0.2, which is two orders of magnitude higher compared with that of tetragonal Na3PS4(t‐Na3PS4). The activation energy (Ea) is determined to be 0.19 eV. Ab initio molecular dynamics simulations shed light on the merit of maximizing Cl‐doping while maintaining low Na deficiency in enhanced Na‐ion conduction. Solid‐state nuclear magnetic resonance (NMR) characterizations confirm the successful substitution of Cl for S and the resulting change of P oxidation state from 5+ to 4+, which is also verified by spin moment analysis. Ion transport pathways are determined with a tracer‐exchange NMR method. The functional detects that promote Na ‐ion transport are maximized for further improvement in ionic conductivity. Full‐cell performance is demonstrated using Na/Na3.0PS3.8Cl0.2/Na3V2(PO4)3with a reversible capacity of ≈100 mAh g‐1at room temperature.

     
    more » « less
  5. Abstract

    The performance of all‐solid‐state batteries (ASSBs) relies on the Li+transport and stability characteristics of solid electrolytes (SEs). Li3PS4is notable for its stability against lithium metal, yet its ionic conductivity remains a limiting factor. This study leverages local structural disorder via O substitution to achieve an ionic conductivity of 1.38 mS cm−1with an activation energy of 0.34 eV for Li3PS4−xOx(x = 0.31). Optimal O substitution transforms Li+transport from 2D to 3D pathways with increased ion mobility. Li3PS3.69O0.31exhibits improvements in the critical current density and stability against Li metal and retains its electrochemical stability window compared with Li3PS4. The practical implementation of Li3PS3.69O0.31in ASSBs half‐cells, particularly when coupled with TiS2as the cathode active material, demonstrates substantially enhanced capacity and rate performance. This work elucidates the utility of introducing local structural disorder to ameliorate SE properties and highlights the benefits of strategically combining the inherent strengths of sulfides and oxides via creating oxysulfide SEs.

     
    more » « less