skip to main content


This content will become publicly available on October 16, 2024

Title: SiTAR: Situated Trajectory Analysis for In-the-Wild Pose Error Estimation
Virtual content instability caused by device pose tracking error remains a prevalent issue in markerless augmented reality (AR), especially on smartphones and tablets. However, when examining environments which will host AR experiences, it is challenging to determine where those instability artifacts will occur; we rarely have access to ground truth pose to measure pose error, and even if pose error is available, traditional visualizations do not connect that data with the real environment, limiting their usefulness. To address these issues we present SiTAR (Situated Trajectory Analysis for Augmented Reality), the first situated trajectory analysis system for AR that incorporates estimates of pose tracking error. We start by developing the first uncertainty-based pose error estimation method for visual-inertial simultaneous localization and mapping (VI-SLAM), which allows us to obtain pose error estimates without ground truth; we achieve an average accuracy of up to 96.1% and an average FI score of up to 0.77 in our evaluations on four VI-SLAM datasets. Next, we present our SiTAR system, implemented for ARCore devices, combining a backend that supplies uncertainty-based pose error estimates with a frontend that generates situated trajectory visualizations. Finally, we evaluate the efficacy of SiTAR in realistic conditions by testing three visualization techniques in an in-the-wild study with 15 users and 13 diverse environments; this study reveals the impact both environment scale and the properties of surfaces present can have on user experience and task performance.  more » « less
Award ID(s):
1908051 2046072 1903136
NSF-PAR ID:
10490752
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proc. IEEE ISMAR
Page Range / eLocation ID:
283 to 292
Subject(s) / Keyword(s):
["Augmented reality","mixed reality","human-computer interaction","situated analytics","uncertainty propagation"]
Format(s):
Medium: X
Location:
Sydney, Australia
Sponsoring Org:
National Science Foundation
More Like this
  1. Demand is growing for markerless augmented reality (AR) experiences, but designers of the real-world spaces that host them still have to rely on inexact, qualitative guidelines on the visual environment to try and facilitate accurate pose tracking. Furthermore, the need for visual texture to support markerless AR is often at odds with human aesthetic preferences, and understanding how to balance these competing requirements is challenging due to the siloed nature of the relevant research areas. To address this, we present an integrated design methodology for AR spaces, that incorporates both tracking and human factors into the design process. On the tracking side, we develop the first VI-SLAM evaluation technique that combines the flexibility and control of virtual environments with real inertial data. We use it to perform systematic, quantitative experiments on the effect of visual texture on pose estimation accuracy; through 2000 trials in 20 environments, we reveal the impact of both texture complexity and edge strength. On the human side, we show how virtual reality (VR) can be used to evaluate user satisfaction with environments, and highlight how this can be tailored to AR research and use cases. Finally, we demonstrate our integrated design methodology with a case study on AR museum design, in which we conduct both VI-SLAM evaluations and a VR-based user study of four different museum environments. 
    more » « less
  2. Mobile augmented reality (AR) has a wide range of promising applications, but its efficacy is subject to the impact of environment texture on both machine and human perception. Performance of the machine perception algorithm underlying accurate positioning of virtual content, visual-inertial SLAM (VI-SLAM), is known to degrade in low-texture conditions, but there is a lack of data in realistic scenarios. We address this through extensive experiments using a game engine-based emulator, with 112 textures and over 5000 trials. Conversely, human task performance and response times in AR have been shown to increase in environments perceived as textured. We investigate and provide encouraging evidence for invisible textures, which result in good VI-SLAM performance with minimal impact on human perception of virtual content. This arises from fundamental differences between VI-SLAM-based machine perception, and human perception as described by the contrast sensitivity function. Our insights open up exciting possibilities for deploying ambient IoT devices that display invisible textures, as part of systems which automatically optimize AR environments. 
    more » « less
  3. Recovering rigid registration between successive camera poses lies at the heart of 3D reconstruction, SLAM and visual odometry. Registration relies on the ability to compute discriminative 2D features in successive camera images for determining feature correspondences, which is very challenging in feature-poor environments, i.e. low-texture and/or low-light environments. In this paper, we aim to address the challenge of recovering rigid registration between successive camera poses in feature-poor environments in a Visual Inertial Odometry (VIO) setting. In addition to inertial sensing, we instrument a small aerial robot with an RGBD camera and propose a framework that unifies the incorporation of 3D geometric entities: points, lines, and planes. The tracked 3D geometric entities provide constraints in an Extended Kalman Filtering framework. We show that by directly exploiting 3D geometric entities, we can achieve improved registration. We demonstrate our approach on different texture-poor environments, with some containing only flat texture-less surfaces providing essentially no 2D features for tracking. In addition, we evaluate how the addition of different 3D geometric entities contributes to improved pose estimation by comparing an estimated pose trajectory to a ground truth pose trajectory obtained from a motion capture system. We consider computationally efficient methods for detecting 3D points, lines and planes, since our goal is to implement our approach on small mobile robots, such as drones. 
    more » « less
  4. We present a novel framework for collaboration amongst a team of robots performing Pose Graph Optimization (PGO) that addresses two important challenges for multi-robot SLAM: i) that of enabling information exchange "on-demand" via Active Rendezvous without using a map or the robot's location, and ii) that of rejecting outlying measurements. Our key insight is to exploit relative position data present in the communication channel between robots to improve groundtruth accuracy of PGO. We develop an algorithmic and experimental framework for integrating Channel State Information (CSI) with multi-robot PGO; it is distributed, and applicable in low-lighting or featureless environments where traditional sensors often fail. We present extensive experimental results on actual robots and observe that using Active Rendezvous results in a 64% reduction in ground truth pose error and that using CSI observations to aid outlier rejection reduces ground truth pose error by 32%. These results show the potential of integrating communication as a novel sensor for SLAM. 
    more » « less
  5. In augmented reality applications it is essential to know the position and orientation of the user to correctly register virtual 3D content in the user’s field of view. For this purpose, visual tracking through simultaneous localization and mapping (SLAM) is often used. However, when applied to the commonly occurring situation where the users are mostly stationary, many methods presented in previous research have two key limitations. First, SLAM techniques alone do not address the problem of global localization with respect to prior models of the environment. Global localization is essential in many applications where multiple users are expected to track within a shared space, such as spectators at a sporting event. Secondly, these methods often assume significant translational movement to accurately reconstruct and track from a local model of the environment, causing challenges for many stationary applications. In this paper, we extend recent research on Spherical Localization and Tracking to support relocalization after tracking failure, as well as global localization in large shared environments, and optimize the method for operation on mobile hardware. We also evaluate various state-of-the-art localization approaches, the robustness of our visual tracking method, and demonstrate the effectiveness of our system in real-life scenarios. 
    more » « less