In early 2020, an international team set out to investigate trade wind cumulus and their coupling to the large-scale circulation through the field campaign EUREC4A: ElUcidating the RolE of Clouds‐Circulation Coupling in ClimAte. Focused on the western tropical Atlantic near Barbados, EUREC4A deployed a number of innovative measurement strategies, including a large network of water isotopic collections, to study the tropical shallow convective environment. The goal of the isotopic measurements was to elucidate processes that regulate the hydroclimate state – for example, by identifying moisture sources, quantifying mixing between atmospheric layers, characterizing the microphysics that influence the formation and persistence of clouds and precipitation, and providing an extra constraint in the evaluation of numerical simulations. During EUREC4A, researchers deployed seven water vapor isotopic analyzers on two aircraft, on three ships, and at the Barbados Cloud Observatory (BCO).
more »
« less
What Controls the Mesoscale Variations in Water Isotopic Composition Within Tropical Cyclones and Squall Lines? Cloud Resolving Model Simulations in Radiative‐Convective Equilibrium
Abstract Water isotopes are tracers of convective processes and are often used as proxies for past precipitation. These applications require a better understanding of the impact of convective processes on the isotopic composition of water vapor and precipitation. One way to advance this understanding is to analyze the isotopic mesoscale variations during organized convective systems such as tropical cyclones or squall lines. The goal of this study is to understand these isotopic mesoscale variations with particular attention to isotopic signals in near‐surface vapor and precipitation that may be present in observations and in paleoclimate proxies. With this aim, we run cloud resolving model simulations in radiative‐convective equilibrium in which rotation or wind shear is added, allowing us to simulate tropical cyclones or squall lines. The simulations capture the robust aspects of mesoscale isotopic variations in observed tropical cyclones and squall lines. We interpret these variations using a simple water budget model for the sub‐cloud layer of different parts of the domain. We find that rain evaporation and rain‐vapor diffusive exchanges are the main drivers of isotopic depletion within tropical cyclones and squall lines. Horizontal advection spreads isotopic anomalies, thus reshaping the mesoscale isotopic pattern. This study contributes to our understanding of mesoscale isotopic variability and provides physical arguments supporting the interpretation of paleoclimate isotopic archives in tropical regions in terms of past cyclonic activity.
more »
« less
- Award ID(s):
- 1938108
- PAR ID:
- 10490795
- Publisher / Repository:
- Wiley Periodicals LLC on behalf of American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 15
- Issue:
- 4
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deep convective clouds (DCCs) are associated with the vertical ascent of air from the lower to the upper atmosphere. They appear in various forms such as thunderstorms, supercells, and squall lines. These convective systems play important roles in the hydrological cycle, Earth’s radiative budget, and the general circulation of the atmosphere. Changes in aerosol (both cloud condensation nuclei and ice-nucleating particles) affect cloud microphysics and dynamics, and thereby influence convective intensity, precipitation, and the radiative effects of deep clouds and their cirrus anvils. However, the very complex dynamics and cloud microphysics of DCCs means that many of these processes are not yet accurately quantified in observations and models. This chapter outlines the main ways in which changes in aerosol affect the microphysical, dynamical, and radiative properties of DCCs. Aerosol interactions with DCCs depend on aerosol properties, storm dynamics, and meteorological conditions. When aerosol particles are light-absorbing, such as soot from industry or biomass burning, the aerosol radiative effects can alter the meteorological conditions under which DCCs form. These radiative effects modify temperature profiles and planetary boundary layer heights, thus changing atmospheric stability and circulation, and affecting the onset and development of DCCs. These large-scale effects, such as the effect of anthropogenic aerosol on the East and South Asian monsoons, can be simulated in coarse-resolution models. These processes are described in Chapter 13. This chapter is concerned with aerosol interactions with DCC systems ranging from individual clouds to mesoscale convective systems. Increases in cloud condensation nuclei (CCN) can enhance cloud droplet number concentrations and decrease droplet sizes, thereby narrowing the droplet size spectrum. For DCCs, a narrowed droplet size spectrum suppresses warm rain formation (rain derived from non-ice-phase processes), allowing the transport of more, smaller droplets to altitudes below 0°C. This may result in (i) freezing of more supercooled water, thereby enhancing latent heating from icerelated microphysical processes and invigorating storms (ice-phase invigoration); (ii) modification of ice-related microphysical processes, which changes cold pools, precipitation rates, and hailstone frequency and size; (iii) expansion of the mixed-phase zone and decreases in the cloud glaciation temperature; and (iv) slowing down of cloud dissipation, resulting in larger cloud cover and cloud depth in the stratiform and anvil regions due to numerous smaller ice particles. The increased cloud cover and cloud depth constitute an influence of aerosol on the cloud radiative effect. Reduced diurnal temperature variation has been observed and simulated as a result of enhanced daytime cooling and nighttime warming by expanded anvil cloud area in polluted environments. However, the global radiative effect of aerosol interactions with DCCs remains to be quantified.more » « less
-
Abstract Describing the processes that regulate the flows and exchanges of water within the atmosphere and between the atmosphere and Earth’s surface is critical for understanding environmental change and predicting Earth’s future accurately. The heavy-to-light hydrogen and oxygen isotope ratios of water provide a useful lens through which to evaluate these processes due to their innate sensitivity to evaporation, condensation, and mixing. In this review, we examine how isotopic information advances our understanding about the origin and transport history of moisture in the atmosphere and about convective processes—including cloud mixing and detrainment, precipitation formation, and rain evaporation. Moreover, we discuss how isotopic data can be used to benchmark numerical simulations across a range of scales and improve predictive skill through data assimilation techniques. This synthesis of work illustrates that, when paired with air mass thermodynamic properties that are commonly measured and modeled (such as specific humidity and temperature), water’s isotope ratios help shed light on moist processes that help set the climate state.more » « less
-
Abstract The South American summer monsoon (SASM) generates important hydroclimatic impacts in (sub‐)tropical South America and isotopic tracers recorded in paleoclimatic archives allow for assessing its long‐term response to Pacific variability prior to modern observations. Stable oxygen isotopes in precipitation integrate hydroclimatic changes during the SASM mature phase from December to February (DJF) in response to the Interdecadal Pacific Oscillation (IPO) and El Niño—Southern Oscillation (ENSO), respectively. Here, results from the isotope‐enabled Community Atmosphere Model v.5 are compared with highly resolved and precisely dated isotopic records from speleothems, tree rings, lake and ice cores during the industrial era (1880–2000 CE) and validated against observations from the International Atomic Energy Agency (IAEA) network. Pacific sea surface temperatures (SSTs) are coupled to the isotopic composition of SASM precipitation through perturbations in the Walker circulation associated with low‐ (IPO) and high‐frequency (ENSO) variability, impacting convective activity over tropical South America and the tropical Atlantic. Changes in convection over this monsoon entrance region ultimately control the downstream oxygen isotopic composition of precipitation recorded in paleoclimate archives. Overall, model results, paleoclimate records and IAEA data agree on the isotopic response to Pacific SST forcing. These results highlight the potential for long isotopic paleoclimate records to reconstruct Pacific climate variability on both high‐ and low‐frequency timescales. Furthermore, the isolation of the IPO signal in a diverse set of isotopic archives invites the reinterpretation of other paleoclimate proxies for identifying this historically overlooked forcing.more » « less
-
Sub-cloud rain evaporation in the trade wind region significantly influences the boundary layer mass and energy budgets. Parameterizing it is, however, difficult due to the sparsity of well-resolved rain observations and the challenges of sampling short-lived marine cumulus clouds. In this study, sub-cloud rain evaporation is analyzed using a steady-state, one-dimensional model that simulates changes in drop sizes, relative humidity, and rain isotopic composition. The model is initialized with relative humidity, raindrop size distributions, and water vapor isotope ratios (e.g., δDv, δ18Ov) sampled by the NOAA P3 aircraft during the Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign (ATOMIC), which was part of the larger EUREC4A (ElUcidating the RolE of Clouds–Circulation Coupling in ClimAte) field program. The modeled surface precipitation isotope ratios closely match the observations from EUREC4A ground-based and ship-based platforms, lending credibility to our model. The model suggests that 63 % of the rain mass evaporates in the sub-cloud layer across 22 P3 cases. The vertical distribution of the evaporated rain flux is top heavy for a narrow (σ) raindrop size distribution (RSD) centered over a small geometric mean diameter (Dg) at the cloud base. A top-heavy profile has a higher rain-evaporated fraction (REF) and larger changes in the rain deuterium excess (d=δD-8×δ18O) between the cloud base and the surface than a bottom-heavy profile, which results from a wider RSD with larger Dg. The modeled REF and change in d are also more strongly influenced by cloud base Dg and σ rather than the concentration of raindrops. The model results are accurate as long as the variations in the relative humidity conditions are accounted for. Relative humidity alone, however, is a poor indicator of sub-cloud rain evaporation. Overall, our analysis indicates the intricate dependence of sub-cloud rain evaporation on both thermodynamic and microphysical processes in the trade wind region.more » « less
An official website of the United States government

