skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biomimetic Total Synthesis of (+)-Nocardioazine B and Analogs
Nocardioazines A and B are prenylated, bioactive pyrroloindoline natural products, isolated from Nocardiopsis, with a desymmetrized cyclo-D-Trp-D-Trp DKP core. Based on our deeper biosynthetic understanding, a biomimetic total synthesis of (+)-nocardioazine B is accomplished in merely seven steps and 23.2% overall yield. This pathway accesses regio- and stereoselectively C3-isoprenylated analogs of (+)-nocardioazine B, using the same number of steps and in similar efficiency. The successful strategy mandated that the biomimetic C3-prenylation step be executed early. The use of an unprotected carboxylic acid of Trp led to high diastereoselectivity toward formation of key intermediates exo-12a, exo-12b, and exo-12c (>19:1). Evidence shows that N1methylation causes the prenylation reaction to bifurcate away to result in a C2-normal-prenylated isomer. Nocardioazine A, possessing an isoprenoidal-epoxide bridge, inhibits P-glycoprotein (P-gp)-mediated membrane efflux, in multidrug-resistant mammalian colon cancer cells. As several P-gp inhibitors have failed due to their toxicity effects, endogenous amino-acid-derived noncytotoxic inhibitors (from the nocardioazine core) are worthy leads toward a rejuvenated strategy against resistant carcinomas. This total synthesis provides direct access to Trp-derived isoprenylated DKP natural products and their derivatives.  more » « less
Award ID(s):
1709655
PAR ID:
10490798
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Organic Chemistry
Volume:
87
Issue:
17
ISSN:
0022-3263
Page Range / eLocation ID:
11519 to 11533
Subject(s) / Keyword(s):
natural product biosynthesis biomimetic synthesis diketopiperazine organic synthesis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The 2,5-diketopiperazines are a prominent class of bioactive molecules. The nocardioazines are actinomycete natural products that feature a pyrroloindoline diketopiperazine scaffold composed of two D-tryptophan residues functionalized byN- andC-methylation, prenylation, and diannulation. Here we identify and characterize the nocardioazine B biosynthetic pathway from marineNocardiopsissp. CMB-M0232 by using heterologous biotransformations, in vitro biochemical assays, and macromolecular modeling. Assembly of thecyclo-L-Trp-L-Trp diketopiperazine precursor is catalyzed by a cyclodipeptide synthase. A separate genomic locus encodes tailoring of this precursor and includes an aspartate/glutamate racemase homolog as an unusualD/Lisomerase acting upon diketopiperazine substrates, a phytoene synthase-like prenyltransferase as the catalyst of indole alkaloid diketopiperazine prenylation, and a rare dual function methyltransferase as the catalyst of bothN- andC-methylation as the final steps of nocardioazine B biosynthesis. The biosynthetic paradigms revealed herein showcase Nature’s molecular ingenuity and lay the foundation for diketopiperazine diversification via biocatalytic approaches. 
    more » « less
  2. Abstract Balgacyclamide A−C are a family of cyanobactin natural products isolated from freshwater cyanobacteriaMicrocystis aeruginosa. These macrocyclic peptides are characterized by their oxazoline‐thiazole core, their 7 or 8 stereocenters, and their antiparasitic activities. Balgacyclamide B is known for its activity towardsPlasmodium falciparumchloroquine‐resistant strain K1,Trypanosoma brucei rhodesiense, andLeishmania donovani. In this report, the first total synthesis of Balgacyclamide B is described in a 17‐steps pathway and a 2 % overall yield. The synthetic pathway toward balgacyclamide B can be adapted for the future syntheses of balgacyclamide A and C. In addition, a brief history background of oxazolines syntheses is shown to emphasize the importance of the cyclization conditions used to interconvert or retain configuration of β‐hydroxy amides via dehydrative cyclization. 
    more » « less
  3. Herein we report our recent progress toward the enantioselective total synthesis of the diterpenoid natural products curcusones A–D by means of complementary Stetter annulation or ring-closing metathesis (RCM) disconnections. Using the latter approach, we have achieved the concise construction of the 5–7–6 carbocyclic core embedded in each member of the curcusone family. Essential to this route is the use of a cross-electrophile coupling strategy, which has not previously been harnessed in the context of natural product synthesis. 
    more » « less
  4. Abstract Pyritides belong to the ribosomally synthesized and post‐translationally modified peptide class of natural products that were recently genome‐predicted and are structurally defined by unique pyridine‐containing macrocycles. Inspired by their biosynthesis, proceeding through peptide modification and cycloaddition to form the heterocyclic core, we report the chemical synthesis of pyritide A2 involving pyridine ring synthesis from an amino acid precursor through aza‐Diels–Alder reaction. This strategy permitted the preparation of the decorated pyridine core with an appended amino acid residue in two steps from a commercially available arginine derivative and secured pyritide A2 in ten steps. Moreover, the synthetic logic enables efficient preparation of different pyridine subunits associated with pyritides, allowing rapid and convergent access to this new class of natural products and analogues thereof. 
    more » « less
  5. Protein and peptide prenylation is an essential biological process involved in many signal transduction pathways. Hence, it plays a critical role in establishing many major human ailments, including Alzheimer's disease, amyotrophic lateral sclerosis (ALS), malaria, and Ras-related cancers. Yeast mating pheromone a-factor is a small dodecameric peptide that undergoes prenylation and subsequent processing in a manner identical to larger proteins. Due to its small size in addition to its well-characterized behavior in yeast, a-factor is an attractive model system to study the prenylation pathway. Traditionally, chemical synthesis and characterization of a-factor have been challenging, which has limited its use in prenylation studies. In this chapter, a robust method for the synthesis of a-factor is presented along with a description of the characterization of the peptide using MALDI and NMR. Finally, complete assignments of resonances from the isoprenoid moiety and a-factor from COSY, TOCSY, HSQC, and long-range HMBC NMR spectra are presented. This methodology should be useful for the synthesis and characterization of other mature prenylated peptides and proteins. 
    more » « less