skip to main content


This content will become publicly available on September 1, 2024

Title: Revisited precipitation process in dilute Mg-Ca-Zn alloys
To obtain thorough understandings of precipitation process in heat-treatable Mg-Ca-Zn alloy, we revisited the precipitation process of a Mg-0.3Ca-0.6 Zn (at.%) dilute alloy during isothermal aging at 200 °C using an aberration-corrected scanning transmission electron microscope, atom probe tomography, and first-principles calculations. The monolayer G.P. zones form on the (0002)α plane in the peak-aged condition and transform into tri-atomic layer η'' and η' plates with a thickness of a single unit-cell height. The η' plates, then, form in pairs and stacks with energetically favorable 4–5 atomic layers of pure magnesium between the plates. While such a transformation path is similar to that seen in Mg-RE-Zn alloys (RE: rare-earth elements), the unique structure of coarse η1 plates that precipitate after the η' plates leads to a different precipitate microstructure evolution from the Mg-RE-Zn system. The η1 phase (Mg7Ca2Zn3) is unevenly distributed in the matrix after 100 h of aging and finally evolves to the equilibrium η phase (Mg10Ca3Zn6) phase with a hexagonal structure. First-principles calculations of energetics were performed to further identify the crystal structure and stability of the precipitates, supporting the following new precipitation sequence: S.S.S.S. → G.P. zones → η'' → η' → η' pairs and stacks / η1 → η  more » « less
Award ID(s):
1921926
NSF-PAR ID:
10490806
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Acta Materialia
Volume:
257
Issue:
C
ISSN:
1359-6454
Page Range / eLocation ID:
119072
Subject(s) / Keyword(s):
["Magnesium alloys","Precipitation","HAADF-STEM","3DAP","First-principles calculation"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Maier, P. ; Barela, S. ; Miller, V.M. ; Neelameggham, N.R. (Ed.)
    Mg-Sn and Mg-Zn alloys exhibit a strong age-hardening effect and have become promising bases for high-strength and low-cost Mg alloys. However, the atomic structures and phase stabilities of various precipitates and intermetallic compounds during the heat treatment in these systems remain unclear. Here we use a combined approach of first-principles calculations and cluster expansion (CE) to investigate the atomic structures and thermodynamic stabilities of the experimentally reported precipitates as well as orderings on the FCC and HCP lattices in Mg-Sn and Mg-Zn alloys. From the low energy structures searched by CE, potential Guinier–Preston (GP) zones are identified from preferred HCP orderings. The slow convergence for CE of HCP Mg-Zn, compared with that of Mg-Sn system, is attributed to the long-ranged interactions resulting from the larger lattice mismatch. This study could help design better age-hardened Mg alloys. 
    more » « less
  2. Selective laser melting (SLM) is one of the most widely used additive manufacturing technologies. Fabricating nickel-based superalloys with SLM has garnered significant interest from the industry and the research community alike due to the excellent high temperature properties and thermal stability exhibited by the alloys. Haynes-282 alloy, a γ′-phase strengthened Ni-based superalloy, has shown good high temperature mechanical properties comparable to alloys like R-41, Waspaloy, and 263 alloy but with better fabricability. A study and comparison of the effect of different heat-treatment routes on microstructure and mechanical property evolution of Haynes-282 fabricated with SLM is lacking in the literature. Hence, in this manuscript, a thorough investigation of microstructure and mechanical properties after a three-step heat treatment and hot isostatic pressing (HIP) has been conducted. In-situ heat-treatment experiments were conducted in a transmission electron microscopy (TEM) to study γ′ precipitate evolution. γ′ precipitation was found to start at 950 °C during in-situ heat-treatment. Insights from the in-situ heat-treatment were used to decide the aging heat-treatment for the alloy. The three-step heat-treatment was found to increase yield strength (YS) and ultimate tensile strength (UTS). HIP process enabled γ′ precipitation and recrystallization of grains of the as-printed samples in one single step. 
    more » « less
  3. Abstract

    Forming metallurgical phases has a critical impact on the performance of dissimilar materials joints. Here, we shed light on the forming mechanism of equilibrium and non-equilibrium intermetallic compounds (IMCs) in dissimilar aluminum/steel joints with respect to processing history (e.g., the pressure and temperature profiles) and chemical composition, where the knowledge of free energy and atomic diffusion in the Al–Fe system was taken from first-principles phonon calculations and data available in the literature. We found that the metastable and ductile (judged by the presently predicted elastic constants) Al6Fe is a pressure (P) favored IMC observed in processes involving high pressures. The MoSi2-type Al2Fe is brittle and a strongP-favored IMC observed at high pressures. The stable, brittle η-Al5Fe2is the most observed IMC (followed by θ-Al13Fe4) in almost all processes, such as fusion/solid-state welding and additive manufacturing (AM), since η-Al5Fe2is temperature-favored, possessing high thermodynamic driving force of formation and the fastest atomic diffusivity among all Al–Fe IMCs. Notably, the ductile AlFe3, the less ductile AlFe, and most of the other IMCs can be formed during AM, making AM a superior process to achieve desired IMCs in dissimilar materials. In addition, the unknown configurations of Al2Fe and Al5Fe2were also examined by machine learning based datamining together with first-principles verifications and structure predictions. All the IMCs that are notP-favored can be identified using the conventional equilibrium phase diagram and the Scheil-Gulliver non-equilibrium simulations.

     
    more » « less
  4. Abstract

    Carbonate‐brucite chimneys are a characteristic of low‐ to moderate‐temperature, ultramafic‐hosted alkaline hydrothermal systems, such as the Lost City hydrothermal field located on the Atlantis Massif at 30°N near the Mid‐Atlantic Ridge. These chimneys form as a result of mixing between warm, serpentinization‐derived vent fluids and cold seawater. Previous work has documented the evolution in mineralogy and geochemistry associated with the aging of the chimneys as hydrothermal activity wanes. However, little is known about spatial heterogeneities within and among actively venting chimneys. New mineralogical and geochemical data (87Sr/86Sr and stable C, O, and clumped isotopes) indicate that the brucite and calcite precipitate at elevated temperatures in vent fluid‐dominated domains in the interior of chimneys. Exterior zones dominated by seawater are brucite‐poor and aragonite is the main carbonate mineral. Carbonates record mostly out of equilibrium oxygen and clumped isotope signatures due to rapid precipitation upon vent fluid‐seawater mixing. On the other hand, the carbonates precipitate closer to carbon isotope equilibrium, with dissolved inorganic carbon in seawater as the dominant carbon source and have δ13C values within the range of marine carbonates. Our data suggest that calcite is a primary mineral in the active hydrothermal chimneys and does not exclusively form as a replacement of aragonite during later alteration with seawater. Elevated formation temperatures and lower87Sr/86Sr relative to aragonite in the same sample suggest that calcite may be the first carbonate mineral to precipitate.

     
    more » « less
  5. Al x CoCrFeNi High Entropy Alloys (HEAs), also referred to as multiprincipal element alloys, have attracted significant interest due to their promising mechanical and structural properties. Despite these attributes, Al x CoCrFeNi HEAs are susceptible to phase separation, forming a wide range of secondary phases upon aging, including NiAl–B2 and Cr-rich phases. Controlling the formation of these phases will enable the design of age-hardenable alloys with optimized corrosion resistance. In this study, we examine the critical role of Al additions and their concentration on the stability of the CoCrFeNi base alloy, uncovering the connections between Al composition and the resulting microstructure. Addition of 0.1 mol fraction of Al destabilizes the single-phase microstructure and results in the formation of Cr-rich body-centered-cubic (bcc) phases. Increasing the composition of Al (0.3–0.5 mol fraction) results in the formation of more complex coprecipitates, NiAl–B2 and Cr-rich bcc. Interestingly, we find that the increase of the Al content stimulates the formation of NiAl–B2 phases, increases the overall density of secondary phases, and influences the content of Cr in Cr-rich bcc phases. Density functional theory calculations of simple decomposition reactions of Al x CoCrFeNi HEAs corroborate the tendency for precipitate formation of these phases upon increased Al composition. Additionally, these calculations support previous results, indicating the base CoCrFeNi alloy to be unstable at low temperature. This work provides a foundation for predictive understanding of phase evolution, opening the window toward designing innovative alloys for targeted applications. 
    more » « less