Scalmalloy® is an Al-Mg-Sc-Zr-based alloy specifically developed for additive manufacturing (AM). This alloy is designed for use with a direct aging treatment, as recommended by the manufacturer, rather than with a multistep treatment, as often seen in conventional manufacturing. Most work with Scalmalloy® is conducted using powder bed rather than powder-fed processes. This investigation seeks to fill this knowledge gap and expand beyond single-step aging to promote an overall balanced AM-fabricated component. For this study, directed energy deposition (DED)-fabricated Scalmalloy® components were subjected to low-temperature treatments to minimize residual stresses inherent in the material due to the layer-by-layer build process. X-ray diffraction (XRD) indicated the possibility of stress minimization while reducing the detriment to mechanical strength through lower temperature treatments. Microstructural analyses consisting of energy dispersion spectroscopy (EDS) and electron backscatter diffraction (EBSD) revealed the presence of grain growth detrimentally affecting the strength and elongation made possible by very small grains inherent to AM and rapid solidification. Tensile testing determined that treatment at 175 °C for 1 h provides the best relief from the existing residual stresses; however, this is accompanied by a diminishment in the yield and tensile strength of 19 and 9.5%, respectively. It is noted that treatment at 175 °C for 2 h did not provide as great of a decrease in residual stresses, theorized to be the result of grain growth and other strengthening mechanisms further stressing the structure; however, the residual stresses are still significantly diminished compared with the as-built condition. Furthermore, a minimal reduction of the tensile strengths indicates the possibility of finding a balance between property diminishment and stress state through the work proposed here.
This content will become publicly available on August 1, 2025
- Award ID(s):
- 1937128
- PAR ID:
- 10542297
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Crystals
- Volume:
- 14
- Issue:
- 8
- ISSN:
- 2073-4352
- Page Range / eLocation ID:
- 688
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Wire-arc directed energy deposition (DED) processed Inconel (IN) 718 is known to have coarse columnar grains, strong texture, and significant chemical and microstructural inhomogeneity in the as-fabricated condition. Homogenization treatment is commonly used prior to aging to eliminate the inhomogeneity and detrimental precipitation for better mechanical properties. In this study, however, direct aging (DA) at 700 °C without homogenization has resulted in room-temperature yield strength, ultimate tensile strength (UTS), and elongation that are comparable to wrought condition and among the highest reported properties for wire-arc DED IN718. The DA samples at between 650 and 750 °C aging also demonstrates remarkable ductility when deformed at elevated temperatures. In addition, when aged below 750 °C the DA IN718 possesses significantly higher UTS compared to those with homogenization treatment. These superior mechanical properties are highly likely due to the non-uniform and hierarchical precipitation consisting of disk-shaped γ″ in diameter from a few to tens of nm in the dendritic core area and micron-sized Laves phase and carbides in the inter-dendritic region.
-
The present work mainly investigated the effect of extrusion temperatures on the microstructure and mechanical properties of Mg-1.3Zn-0.5Ca (wt.%) alloys. The alloys were subjected to extrusion at 300 °C, 350 °C, and 400 °C with an extrusion ratio of 9.37. The results demonstrated that both the average size and volume fraction of dynamic recrystallized (DRXed) grains increased with increasing extrusion temperature (DRXed fractions of 0.43, 0.61, and 0.97 for 300 °C, 350 °C, and 400 °C, respectively). Moreover, the as-extruded alloys exhibited a typical basal fiber texture. The alloy extruded at 300 °C had a microstructure composed of fine DRXed grains of ~1.54 µm and strongly textured elongated unDRXed grains. It also had an ultimate tensile strength (UTS) of 355 MPa, tensile yield strength (TYS) of 284 MPa, and an elongation (EL) of 5.7%. In contrast, after extrusion at 400 °C, the microstructure was almost completely DRXed with a greatly weakened texture, resulting in an improved EL of 15.1% and UTS of 274 MPa, TYS of 220 MPa. At the intermediate temperature of 350 °C, the alloy had a UTS of 298 MPa, TYS of 234 MPa, and EL of 12.8%.more » « less
-
null (Ed.)
Abstract Precipitation strengthening of alloys by the formation of secondary particles (precipitates) in the matrix is one of the techniques used for increasing the mechanical strength of metals. Understanding the precipitation kinetics such as nucleation, growth, and coarsening of these precipitates is critical for evaluating their hardening effects and improving the yield strength of the alloy during heat treatment. To optimize the heat treatment strategy and accelerate alloy design, predicting precipitate hardening effects via numerical methods is a promising complement to trial-and-error-based experiments and the physics-based phase-field method stands out with the significant potential to accurately predict the precipitate morphology and kinetics. In this study, we present a phase-field model that captures the nucleation, growth, and coarsening kinetics of precipitates during isothermal heat treatment conditions. Thermodynamic data, diffusion coefficients, and misfit strain data from experimental or lower length-scale calculations are used as input parameters for the phase-field model. Classical nucleation theory is implemented to capture the nucleation kinetics. As a case study, we apply the model to investigate γ″ precipitation kinetics in Inconel 625. The simulated mean particle length, aspect ratio, and volume fraction evolution are in agreement with experimental data for simulations at 600 °C and 650 °C during isothermal heat treatment. Utilizing the meso-scale results from the phase-field simulations as input parameters to a macro-scale coherency strengthening model, the evolution of the yield strength during heat treatment was predicted. In a broader context, we believe the current study can provide practical guidance for applying the phase-field approach as a link in the multiscale modeling of material properties.
-
Perander, L. (Ed.)Retrogression forming and reaging (RFRA) is a new warm-forming process designed to produce automotive structural components from high-strength aluminum alloys. A scientific approach is described to determine appropriate RFRA conditions for AA7075-T6 and is applied to laboratory-scale forming experiments. The concept of reduced time is used with the activation energy of retrogression measured for AA7075-T6 to predict appropriate times and temperatures for retrogression forming. Conditions recommended for AA7075-T6 are retrogression at 200 °C for 3 to 12 min while forming at strain rates of up to 10^{–1} s^{−1}. The recommended reaging heat treatment to fully restore strength to the T6 condition after retrogression forming is 120 °C for 24 h. These RFRA conditions were successfully applied in laboratory-scale experiments to form AA7075-T6 Alclad sheet and produce a final strength equivalent to the T6 condition. Data from tensile tests provide flow stresses and tensile ductilities across the range of conditions appropriate for RFRA.more » « less