The dramatic surge of health misinformation on social media platforms poses a significant threat to public health, contributing to hesitancy in vaccines, delayed medical interventions, and the adoption of untested or harmful treatments. We present a novel, hybrid AI-driven framework designed for the real-time detection of health misinformation on social media platforms while prioritizing user privacy. The framework integrates the strengths of Large Language Models (LLMs), such as DistilBERT, with domain-specific Knowledge Graphs (KGs) to enhance the detection of nuanced and contextually dependent misinformation. LLMs excel at understanding the complexities of human language, while KGs provide a structured representation of medical knowledge, allowing factual verification and identification of inconsistencies. Furthermore, the framework incorporates robust privacy-preserving mechanisms, including differential privacy and secure data pipelines, to address user privacy concerns and comply with healthcare data protection regulations. Our experimental results on a dataset of Reddit posts related to chronic health conditions demonstrate the performance of this hybrid approach compared to models that only use text or KG, highlighting the synergistic effect of combining LLMs and KGs for improved misinformation detection.
more »
« less
Building trustworthy NeuroSymbolic AI Systems: Consistency, reliability, explainability, and safety
Abstract Explainability and Safety engender trust. These require a model to exhibit consistency and reliability. To achieve these, it is necessary to use and analyzedataandknowledgewith statistical and symbolic AI methods relevant to the AI application––neither alone will do. Consequently, we argue and seek to demonstrate that the NeuroSymbolic AI approach is better suited for making AI a trusted AI system. We present the CREST framework that shows howConsistency,Reliability, user‐levelExplainability, andSafety are built on NeuroSymbolic methods that use data and knowledge to support requirements for critical applications such as health and well‐being. This article focuses on Large Language Models (LLMs) as the chosen AI system within the CREST framework. LLMs have garnered substantial attention from researchers due to their versatility in handling a broad array of natural language processing (NLP) scenarios. As examples, ChatGPT and Google's MedPaLM have emerged as highly promising platforms for providing information in general and health‐related queries, respectively. Nevertheless, these models remain black boxes despite incorporating human feedback and instruction‐guided tuning. For instance, ChatGPT can generateunsafe responsesdespite instituting safety guardrails. CREST presents a plausible approach harnessing procedural and graph‐based knowledge within a NeuroSymbolic framework to shed light on the challenges associated with LLMs.
more »
« less
- Award ID(s):
- 2335967
- PAR ID:
- 10490817
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- AI Magazine
- Volume:
- 45
- Issue:
- 1
- ISSN:
- 0738-4602
- Format(s):
- Medium: X Size: p. 139-155
- Size(s):
- p. 139-155
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Research within sociotechnical domains, such as Software Engineering, fundamentally requires the human perspective. Nevertheless, traditional qualitative data collection methods suffer from difficulties in participant recruitment, scaling, and labor intensity. This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI), especially large language models (LLMs) like ChatGPT and multimodal foundation models. We explore the potential of AI-generated synthetic text as an alternative source of qualitative data, discussing how LLMs can replicate human responses and behaviors in research settings. We discuss AI applications in emulating humans in interviews, focus groups, surveys, observational studies, and user evaluations. We discuss open problems and research opportunities to implement this vision. In the future, an integrated approach where both AI and human-generated data coexist will likely yield the most effective outcomes.more » « less
-
Education is poised for a transformative shift with the advent of neurosymbolic artificial intelligence (NAI), which will redefine how we support deeply adaptive and personalized learning experiences. The integration of Knowledge Graphs (KGs) with Large Language Models (LLMs), a significant and popular form of NAI, presents a promising avenue for advancing personalized instruction via neurosymbolic educational agents. By leveraging structured knowledge, these agents can provide individualized learning experiences that align with specific learner preferences and desired learning paths, while also mitigating biases inherent in traditional AI systems. NAI-powered education systems will be capable of interpreting complex human concepts and contexts while employing advanced problem-solving strategies, all grounded in established pedagogical frameworks. In this paper, we propose a system that leverages the unique affordances of KGs, LLMs, and pedagogical agents – embodied characters designed to enhance learning – as critical components of a hybrid NAI architecture. We discuss the rationale for our system design and the preliminary findings of our work. We conclude that education in the era of NAI will make learning more accessible, equitable, and aligned with real-world skills. This is an era that will explore a new depth of understanding in educational tools.more » « less
-
Introduction: Because developing integrated computer science (CS) curriculum is a resource-intensive process, there is interest in leveraging the capabilities of AI tools, including large language models (LLMs), to streamline this task. However, given the novelty of LLMs, little is known about their ability to generate appropriate curriculum content. Research Question: How do current LLMs perform on the task of creating appropriate learning activities for integrated computer science education? Methods: We tested two LLMs (Claude 3.5 Sonnet and ChatGPT 4-o) by providing them with a subset of national learning standards for both CS and language arts and asking them to generate a high-level description of learning activities that met standards for both disciplines. Four humans rated the LLM output – using an aggregate rating approach – in terms of (1) whether it met the CS learning standard, (2) whether it met the language arts learning standard, (3) whether it was equitable, and (4) its overall quality. Results: For Claude AI, 52% of the activities met language arts standards, 64% met CS standards, and the average quality rating was middling. For ChatGPT, 75% of the activities met language arts standards, 63% met CS standards, and the average quality rating was low. Virtually all activities from both LLMs were rated as neither actively promoting nor inhibiting equitable instruction. Discussion: Our results suggest that LLMs are not (yet) able to create appropriate learning activities from learning standards. The activities were generally not usable by classroom teachers without further elaboration and/or modification. There were also grammatical errors in the output, something not common with LLM-produced text. Further, standards in one or both disciplines were often not addressed, and the quality of the activities was often low. We conclude with recommendations for the use of LLMs in curriculum development in light of these findings.more » « less
-
Opening a conversation on responsible environmental data science in the age of large language modelsAbstract The general public and scientific community alike are abuzz over the release of ChatGPT and GPT-4. Among many concerns being raised about the emergence and widespread use of tools based on large language models (LLMs) is the potential for them to propagate biases and inequities. We hope to open a conversation within the environmental data science community to encourage the circumspect and responsible use of LLMs. Here, we pose a series of questions aimed at fostering discussion and initiating a larger dialogue. To improve literacy on these tools, we provide background information on the LLMs that underpin tools like ChatGPT. We identify key areas in research and teaching in environmental data science where these tools may be applied, and discuss limitations to their use and points of concern. We also discuss ethical considerations surrounding the use of LLMs to ensure that as environmental data scientists, researchers, and instructors, we can make well-considered and informed choices about engagement with these tools. Our goal is to spark forward-looking discussion and research on how as a community we can responsibly integrate generative AI technologies into our work.more » « less
An official website of the United States government
