Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Explainability and Safety engender trust. These require a model to exhibit consistency and reliability. To achieve these, it is necessary to use and analyzedataandknowledgewith statistical and symbolic AI methods relevant to the AI application––neither alone will do. Consequently, we argue and seek to demonstrate that the NeuroSymbolic AI approach is better suited for making AI a trusted AI system. We present the CREST framework that shows howConsistency,Reliability, user‐levelExplainability, andSafety are built on NeuroSymbolic methods that use data and knowledge to support requirements for critical applications such as health and well‐being. This article focuses on Large Language Models (LLMs) as the chosen AI system within the CREST framework. LLMs have garnered substantial attention from researchers due to their versatility in handling a broad array of natural language processing (NLP) scenarios. As examples, ChatGPT and Google's MedPaLM have emerged as highly promising platforms for providing information in general and health‐related queries, respectively. Nevertheless, these models remain black boxes despite incorporating human feedback and instruction‐guided tuning. For instance, ChatGPT can generateunsafe responsesdespite instituting safety guardrails. CREST presents a plausible approach harnessing procedural and graph‐based knowledge within a NeuroSymbolic framework to shed light on the challenges associated with LLMs.more » « less
-
Cross-modal recipe retrieval has gained prominence due to its ability to retrieve a text representation given an image representation and vice versa. Clustering these recipe representations based on similarity is essential to retrieve relevant information about unknown food images. Existing studies cluster similar recipe representations in the latent space based on class names. Due to inter-class similarity and intraclass variation, associating a recipe with a class name does not provide sufficient knowledge about recipes to determine similarity. However, recipe title, ingredients, and cooking actions provide detailed knowledge about recipes and are a better determinant of similar recipes. In this study, we utilized this additional knowledge of recipes, such as ingredients and recipe title, to identify similar recipes, emphasizing attention especially on rare ingredients. To incorporate this knowledge, we propose a knowledge-infused multimodal cooking representation learning network, Ki-Cook, built on the procedural attribute of the cooking process. To the best of our knowledge, this is the first study to adopt a comprehensive recipe similarity determinant to identify and cluster similar recipe representations. The proposed network also incorporates ingredient images to learn multimodal cooking representation. Since the motivation for clustering similar recipes is to retrieve relevant information for an unknown food image, we evaluated the ingredient retrieval task. We performed an empirical analysis to establish that our proposed model improves the Coverage of Ground Truth by 12% and the Intersection Over Union by 10% compared to the baseline models. On average, the representations learned by our model contain an additional 15.33% of rare ingredients compared to the baseline models. Owing to this difference, our qualitative evaluation shows a 39% improvement in clustering similar recipes in the latent space compared to the baseline models, with an inter-annotator agreement of the Fleiss kappa score of 0.35.more » « less
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Automated Planning and Scheduling is among the growing areas in Artificial Intelligence (AI) where mention of LLMs has gained popularity. Based on a comprehensive review of 126 papers, this paper investigates eight categories based on the unique applications of LLMs in addressing various aspects of planning problems: language translation, plan generation, model construction, multi-agent planning, interactive planning, heuristics optimization, tool integration, and brain-inspired planning. For each category, we articulate the issues considered and existing gaps. A critical insight resulting from our review is that the true potential of LLMs unfolds when they are integrated with traditional symbolic planners, pointing towards a promising neuro-symbolic approach. This approach effectively combines the generative aspects of LLMs with the precision of classical planning methods. By synthesizing insights from existing literature, we underline the potential of this integration to address complex planning challenges. Our goal is to encourage the ICAPS community to recognize the complementary strengths of LLMs and symbolic planners, advocating for a direction in automated planning that leverages these synergistic capabilities to develop more advanced and intelligent planning systems. We aim to keep the categorization of papers updated on https://ai4society.github.io/LLM-Planning-Viz/, a collaborative resource that allows researchers to contribute and add new literature to the categorization.more » « less
-
Despite their extensive application in language understanding tasks, large language models (LLMs) still encounter challenges including hallucinations - occasional fabrication of information - and alignment issues - lack of associations with human-curated world models (e.g., intuitive physics or common-sense knowledge). Moreover, the black-box nature of LLMs presents significant obstacles in training them effectively to achieve desired behaviors. In particular, modifying the concept embedding spaces of LLMs can be highly intractable. This process involves analyzing the implicit impact of such adjustments on the myriad parameters within LLMs and the resulting inductive biases. We propose a novel architecture that wraps powerful function approximation architectures within an outer, interpretable read-out layer. This read-out layer can be scrutinized to explicitly observe the effects of concept modeling during the training of the LLM. Our method stands in contrast with gradient-based implicit mechanisms, which depend solely on adjustments to the LLM parameters and thus evade scrutiny. By conducting extensive experiments across both generative and discriminative language modeling tasks, we evaluate the capabilities of our proposed architecture relative to state-of-the-art LLMs of similar sizes. Additionally, we offer a qualitative examination of the interpretable read-out layer and visualize the concepts it captures. The results demonstrate the potential of our approach for effectively controlling LLM hallucinations and enhancing the alignment with human expectations.more » « less
-
Large Language Models have excelled at encoding and leveraging language patterns in large text-based corpora for various tasks, including spatiotemporal event-based question answering (QA). However, due to encoding a text-based projection of the world, they have also been shown to lack a full bodied understanding of such events, e.g., a sense of intuitive physics, and cause-and-effect relationships among events. In this work, we propose using causal event graphs (CEGs) to enhance language understanding of spatiotemporal events in language models, using a novel approach that also provides proofs for the model’s capture of the CEGs. A CEG consists of events denoted by nodes, and edges that denote cause and effect relationships among the events. We perform experimentation and evaluation of our approach for benchmark spatiotemporal QA tasks and show effective performance, both quantitative and qualitative, over state-of-the-art baseline methods.more » « less
-
Predicting anomalies in manufacturing assembly lines is crucial for reducing time and labor costs and improving processes. For instance, in rocket assembly, premature part failures can lead to significant financial losses and labor inefficiencies. With the abundance of sensor data in the Industry 4.0 era, machine learning (ML) offers potential for early anomaly detection. However, current ML methods for anomaly prediction have limitations, with F1 measure scores of only 50% and 66% for prediction and detection, respectively. This is due to challenges like the rarity of anomalous events, scarcity of high-fidelity simulation data (actual data are expensive), and the complex relationships between anomalies not easily captured using traditional ML approaches. Specifically, these challenges relate to two dimensions of anomaly prediction: predicting when anomalies will occur and understanding the dependencies between them. This paper introduces a new method called Robust and Interpretable 2D Anomaly Prediction (RI2AP) designed to address both dimensions effectively. RI2AP is demonstrated on a rocket assembly simulation, showing up to a 30-point improvement in F1 measure compared to current ML methods. This highlights its potential to enhance automated anomaly prediction in manufacturing. Additionally, RI2AP includes a novel interpretation mechanism inspired by a causal-influence framework, providing domain experts with valuable insights into sensor readings and their impact on predictions. Finally, the RI2AP model was deployed in a real manufacturing setting for assembling rocket parts. Results and insights from this deployment demonstrate the promise of RI2AP for anomaly prediction in manufacturing assembly pipelines.more » « less
An official website of the United States government
