skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: Controls of Methane Emission Fluxes from Freshwater Wetlands at the Global Scale
We investigated the climatic and ecohydrological controls of the monthly methane emission fluxes from freshwater wetlands across the globe. Fluxes of methane, photosynthetically active radiation (PAR), soil temperature (TS), atmospheric pressure, latent heat flux (LE), wind speed (WS), friction velocity, vapor pressure deficit (VPD), soil water content (SWC), water table depth, and precipitation were obtained from 32 FLUXNET wetland sites. Multivariate pattern recognition techniques of principal component and factor analyses were utilized to classify and group climatic and ecological variables based on their similarity as drivers, examining their interrelation patterns across the different sites. Partial least squares regression models were developed to estimate the relative linkages of methane emission fluxes with the climatic and ecohydrological drivers. When the wetlands were flooded (i.e., positive water table depth relative to the ground), PAR, LE, VPD, and TS had the strongest controls on the methane emission fluxes. However, in the absence of flooding (i.e., negative water table depth), the methane emission fluxes were mainly controlled by SWC and WS. For the wetland sites with unavailable water table depth data, PAR, TS, and WS had the strongest controls on the methane emissions and subsequent transport. Our findings provided important knowledge and insights for predicting and managing methane emissions in freshwater wetlands at a global scale.  more » « less
Award ID(s):
1705941
PAR ID:
10490887
Author(s) / Creator(s):
;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
American Geophysical Union Fall Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes the formation of, and initial results for, a new FLUXNET coordination network for ecosystem-scale methane (CH 4 ) measurements at 60 sites globally, organized by the Global Carbon Project in partnership with other initiatives and regional flux tower networks. The objectives of the effort are presented along with an overview of the coverage of eddy covariance (EC) CH 4 flux measurements globally, initial results comparing CH 4 fluxes across the sites, and future research directions and needs. Annual estimates of net CH 4 fluxes across sites ranged from −0.2 ± 0.02 g C m –2 yr –1 for an upland forest site to 114.9 ± 13.4 g C m –2 yr –1 for an estuarine freshwater marsh, with fluxes exceeding 40 g C m –2 yr –1 at multiple sites. Average annual soil and air temperatures were found to be the strongest predictor of annual CH 4 flux across wetland sites globally. Water table position was positively correlated with annual CH 4 emissions, although only for wetland sites that were not consistently inundated throughout the year. The ratio of annual CH 4 fluxes to ecosystem respiration increased significantly with mean site temperature. Uncertainties in annual CH 4 estimates due to gap-filling and random errors were on average ±1.6 g C m –2 yr –1 at 95% confidence, with the relative error decreasing exponentially with increasing flux magnitude across sites. Through the analysis and synthesis of a growing EC CH 4 flux database, the controls on ecosystem CH 4 fluxes can be better understood, used to inform and validate Earth system models, and reconcile differences between land surface model- and atmospheric-based estimates of CH 4 emissions. 
    more » « less
  2. null (Ed.)
    Abstract. Methane (CH4) emissions from natural landscapes constituteroughly half of global CH4 contributions to the atmosphere, yet largeuncertainties remain in the absolute magnitude and the seasonality ofemission quantities and drivers. Eddy covariance (EC) measurements ofCH4 flux are ideal for constraining ecosystem-scale CH4emissions due to quasi-continuous and high-temporal-resolution CH4flux measurements, coincident carbon dioxide, water, and energy fluxmeasurements, lack of ecosystem disturbance, and increased availability ofdatasets over the last decade. Here, we (1) describe the newly publisheddataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset ofCH4 EC measurements (available athttps://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4includes half-hourly and daily gap-filled and non-gap-filled aggregatedCH4 fluxes and meteorological data from 79 sites globally: 42freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drainedecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverageglobally because the majority of sites in FLUXNET-CH4 Version 1.0 arefreshwater wetlands which are a substantial source of total atmosphericCH4 emissions; and (3) we provide the first global estimates of theseasonal variability and seasonality predictors of freshwater wetlandCH4 fluxes. Our representativeness analysis suggests that thefreshwater wetland sites in the dataset cover global wetland bioclimaticattributes (encompassing energy, moisture, and vegetation-relatedparameters) in arctic, boreal, and temperate regions but only sparselycover humid tropical regions. Seasonality metrics of wetland CH4emissions vary considerably across latitudinal bands. In freshwater wetlands(except those between 20∘ S to 20∘ N) the spring onsetof elevated CH4 emissions starts 3 d earlier, and the CH4emission season lasts 4 d longer, for each degree Celsius increase in meanannual air temperature. On average, the spring onset of increasing CH4emissions lags behind soil warming by 1 month, with very few sites experiencingincreased CH4 emissions prior to the onset of soil warming. Incontrast, roughly half of these sites experience the spring onset of risingCH4 emissions prior to the spring increase in gross primaryproductivity (GPP). The timing of peak summer CH4 emissions does notcorrelate with the timing for either peak summer temperature or peak GPP.Our results provide seasonality parameters for CH4 modeling andhighlight seasonality metrics that cannot be predicted by temperature or GPP(i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resourcefor diagnosing and understanding the role of terrestrial ecosystems andclimate drivers in the global CH4 cycle, and future additions of sitesin tropical ecosystems and site years of data collection will provide addedvalue to this database. All seasonality parameters are available athttps://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021).Additionally, raw FLUXNET-CH4 data used to extract seasonality parameterscan be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a completelist of the 79 individual site data DOIs is provided in Table 2 of this paper. 
    more » « less
  3. Abstract A major source of uncertainty in the global methane budget arises from quantifying the area of wetlands and other inland waters. This study addresses how the dynamics of surface water extent in forested wetlands affect the calculation of methane emissions. We used fine resolution satellite imagery acquired at sub‐weekly intervals together with a semiempirical methane emissions model to estimate daily surface water extent and diffusive methane fluxes for a low‐relief wetland‐rich watershed. Comparisons of surface water model predictions to field measurements showed agreement with the magnitude of changes in water extent, including for wetlands with surface area less than 1,000 m2. Results of methane emission models showed that wetlands smaller than 1 hectare (10,000 m2) were responsible for a majority of emissions, and that considering dynamic inundation of forested wetlands resulted in 49%–62% lower emission totals compared to models using a single estimate for each wetland’s size. 
    more » « less
  4. Wetlands are the largest natural source of methane (CH4); however, the contribution of subtropical wetlands to global CH4 budgets is still unclear due to difficulties in accurately quantifying CH4 emissions from these complex ecosystems. Both direct (water management strategies) and indirect (altered weather patterns associated with climate change) anthropogenic influences are also leading to greater uncertainties in our ability to determine changes in CH4 emissions from these ecosystems. This study compares CH4 fluxes from two freshwater marshes with different hydroperiods (short versus long) in the Florida Everglades to examine temporal patterns and biophysical drivers of CH4 fluxes. Both sites showed similar seasonal patterns across years with higher CH4 release during wet seasons versus dry seasons. The long hydroperiod site showed stronger seasonal patterns and overall, emitted more CH4 than the short hydroperiod site; however, no distinctive diurnal patterns were observed. We found that air temperature was a significant positive driver of CH4 fluxes for both sites regardless of season. In addition, gross ecosystem exchange was a significant negative predictor of CH4 emissions in the dry season at the long hydroperiod site. CH4 fluxes were impacted by water level and its changes over site and season, and time scales, which are influenced by rainfall and water management practices. Thus with increasing water distribution associated the Comprehensive Everglades Restoration Plan we expect increases in CH4 emissions, and when couple with increased with projected higher temperatures in the region, these increases may be enhanced, leading to greater radiative forcing. 
    more » « less
  5. Atmospheric methane levels were nearly steady between 1999 and 2006, but have been rising since then. Increases in wetland emissions, the largest natural global CH4 source, may be partly responsible. Tropical regions like Amazonia, host some of the largest wetlands on Earth, but there are few in-situ observations, which allow large-scale flux estimation. To improve estimates of its contribution to the global CH4 budget we measured 590 lower-troposphere methane concentrations vertical profiles at four Amazonian sites between 2010 and 2018. We estimate that Amazonia emits 46.2±10.3 TgCH4 y-1 (~8% of global emissions) with no emission trend. Non-fire sources (mainly wetlands) dominate emissions, with a smaller biomass burning contribution (~17%). We find a distinct east-west contrast with an emission peak in the northeast. Furthermore, while northwest-central Amazon emissions are nearly aseasonal, consistent with weak precipitation seasonality, southern emissions are strongly seasonal synchronously with equivalent water thickness seasonality. 
    more » « less