1. The evolution of hummingbird pollination is common across angiosperm lineages throughout the Americas, presenting an opportunity to examine convergence in both traits and environments to better understand how complex phenotypes arise. We examine multiple independent shifts from bee to hummingbird pollination in the Neotropical spiral gingers (Costus) and use our data to address several common explanations for the prevalence of bee to bird pollination transitions. 2. We use floral traits of species with observed pollinators to predict pollinators of unobserved species and reconstruct ancestral pollination states on a well-resolved phylogeny. We examine whether independent transitions evolve towards the same phenotypic optimum and whether shifts to hummingbird pollination are associated with high elevation or climatic niche. 3. Traits predicting hummingbird pollination include small flower size, brightly-colored floral bracts, and the absence of nectar guides. We find many shifts to hummingbird pollination and no reversals, a single shared phenotypic optimum across hummingbird flowers, and no association between pollination and elevation or climatic niche. 4. Costus presents surprising findings compared to other plant clades. Hummingbird flowers are consistently smaller than bee flowers and primary flower colors are not predictive of pollinators. Moreover, hummingbird pollination shows no association with high elevation, as found in other tropical plants. 
                        more » 
                        « less   
                    
                            
                            Olfaction in the Anthropocene: NO 3 negatively affects floral scent and nocturnal pollination
                        
                    
    
            There is growing concern about sensory pollutants affecting ecological communities. Anthropogenically enhanced oxidants [ozone (O3) and nitrate radicals (NO3)] rapidly degrade floral scents, potentially reducing pollinator attraction to flowers. However, the physiological and behavioral impacts on pollinators and plant fitness are unknown. Using a nocturnal flower-moth system, we found that atmospherically relevant concentrations of NO3eliminate flower visitation by moths, and the reaction of NO3with a subset of monoterpenes is what reduces the scent’s attractiveness. Global atmospheric models of floral scent oxidation reveal that pollinators in certain urban areas may have a reduced ability to perceive and navigate to flowers. These results illustrate the impact of anthropogenic pollutants on an animal’s olfactory ability and indicate that such pollutants may be critical regulators of global pollination. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2124777
- PAR ID:
- 10490946
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science
- Volume:
- 383
- Issue:
- 6683
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 607 to 611
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Flowers may become inoculated with pathogens that can infect bees and other critical pollinators, but the mechanisms of inoculation remain unclear. During foraging, bees may regurgitate or defecate directly onto flower parts, which could inoculate flowers with pollinator pathogens and lead to subsequent disease transmission to floral visitors. We tested if captive eastern bumble bees (Bombus impatiens) (Cresson) (Hymenoptera: Apidae) defecate on floral surfaces during foraging and if flower shape played a role in the probability of defecation and the quantity of feces deposited on floral surfaces. Captive Bombus impatiens were fed a solution of fluorescent dye and sucrose, then allowed to forage freely on flowers of a variety of shapes in a flight cage. Flowers were then examined under ultraviolet light for fluorescing fecal matter. We found that bumble bees did defecate on floral surfaces during foraging and that composite flowers with a large area of disk flowers were the most likely to have feces on them. Our results point to defecation by bumble bees during foraging as a potential mechanism for inoculation of flowers with pollinator pathogens and suggest that flower shape could play a significant role in inoculation.more » « less
- 
            null (Ed.)Flowers at times host abundant and specialized communities of bacteria and fungi that influence floral phenotypes and interactions with pollinators. Ecological processes drive variation in microbial abundance and composition at multiple scales, including among plant species, among flower tissues, and among flowers on the same plant. Variation in microbial effects on floral phenotype suggests that microbial metabolites could cue the presence or quality of rewards for pollinators, but most plants are unlikely to rely on microbes for pollinator attraction or reproduction. From a microbial perspective, flowers offer opportunities to disperse between habitats, but microbial species differ in requirements for and benefits received from such dispersal. The extent to which floral microbes shape the evolution of floral traits, influence fitness of floral visitors, and respond to anthropogenic change is unclear. A deeper understanding of these phenomena could illuminate the ecological and evolutionary importance of floral microbiomes and their role in the conservation of plant–pollinator interactions.more » « less
- 
            Abstract Phenological distributions are characterized by their central tendency, breadth, and shape, and all three determine the extent to which interacting species overlap in time. Pollination mutualisms rely on temporal co‐occurrence of pollinators and their floral resources, and although much work has been done to characterize the shapes of flower phenological distributions, similar studies that include pollinators are lacking. Here, we provide the first broad assessment of skewness, a component of distribution shape, for a bee community. We compare skewness in bees to that in flowers, relate bee and flower skewness to other properties of their phenology, and quantify the potential consequences of differences in skewness between bees and flowers. Both bee and flower phenologies tend to be right‐skewed, with a more exaggerated asymmetry in bees. Early‐season species tend to be the most skewed, and this relationship is also stronger in bees than in flowers. Based on a simulation experiment, differences in bee and flower skewness could account for up to 14% of pairwise overlap differences. Given the potential for interaction loss, we argue that difference in skewness of interacting species is an underappreciated property of phenological change.more » « less
- 
            Abstract Vairimorpha (=Nosema) ceranaeis a widespread pollinator parasite that commonly infects honeybees and wild pollinators, including bumblebees. Honeybees are highly competentV. ceranaehosts and previous work in experimental flight cages suggestsV. ceranaecan be transmitted during visitation to shared flowers. However, the relationship between floral visitation in the natural environment and the prevalence ofV. ceranaeamong multiple bee species has not been explored. Here, we analyzed the number and duration of pollinator visits to particular components of squash flowers—including the petals, stamen, and nectary—at six farms in southeastern Michigan, USA. We also determined the prevalence ofV. ceranaein honeybees and bumblebees at each site. Our results showed that more honeybee flower contacts and longer duration of contacts with pollen and nectar were linked with greaterV. ceranaeprevalence in bumblebees. Honeybee visitation patterns appear to have a disproportionately large impact onV. ceranaeprevalence in bumblebees even though honeybees are not the most frequent flower visitors. Floral visitation by squash bees or other pollinators was not linked withV. ceranaeprevalence in bumblebees. Further,V. ceranaeprevalence in honeybees was unaffected by floral visitation behaviors by any pollinator species. These results suggest that honeybee visitation behaviors on shared floral resources may be an important contributor to increasedV. ceranaespillover to bumblebees in the field. Understanding howV. ceranaeprevalence is influenced by pollinator behavior in the shared floral landscape is critical for reducing parasite spillover into declining wild bee populations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    