skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Athena – The NSF AI Institute for Edge Computing
Abstract

The National Science Foundation (NSF) Artificial Intelligence (AI) Institute for Edge Computing Leveraging Next Generation Networks (Athena) seeks to foment a transformation in modern edge computing by advancing AI foundations, computing paradigms, networked computing systems, and edge services and applications from a completely new computing perspective. Led by Duke University, Athena leverages revolutionary developments in computer systems, machine learning, networked computing systems, cyber‐physical systems, and sensing. Members of Athena form a multidisciplinary team from eight universities. Athena organizes its research activities under four interrelated thrusts supporting edge computing: Foundational AI, Computer Systems, Networked Computing Systems, and Services and Applications, which constitute an ambitious and comprehensive research agenda. The research tasks of Athena will focus on developing AI‐driven next‐generation technologies for edge computing and new algorithmic and practical foundations of AI and evaluating the research outcomes through a combination of analytical, experimental, and empirical instruments, especially with target use‐inspired research. The researchers of Athena demonstrate a cohesive effort by synergistically integrating the research outcomes from the four thrusts into three pillars: Edge Computing AI Systems, Collaborative Extended Reality (XR), and Situational Awareness and Autonomy. Athena is committed to a robust and comprehensive suite of educational and workforce development endeavors alongside its domestic and international collaboration and knowledge transfer efforts with external stakeholders that include both industry and community partnerships.

 
more » « less
NSF-PAR ID:
10490990
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AI Magazine
ISSN:
0738-4602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Artificial intelligence (AI) has the potential for vast societal and economic gain; yet applications are developed in a largely ad hoc manner, lacking coherent, standardized, modular, and reusable infrastructures. The NSF‐funded Intelligent CyberInfrastructure with Computational Learning in the Environment AI Institute (“ICICLE”) aims to fundamentally advanceedge‐to‐center, AI‐as‐a‐Service, achieved through intelligent cyberinfrastructure (CI) that spans the edge‐cloud‐HPCcomputing continuum,plug‐and‐playnext‐generation AI and intelligent CI services, and a commitment to design for broad accessibility and widespread benefit. This design is foundational to the institute's commitment to democratizing AI. The institute's CI activities are informed by three high‐impact domains:animal ecology,digital agriculture, andsmart foodsheds. The institute's workforce development and broadening participation in computing efforts reinforce the institute's commitment todemocratizing AI. ICICLE seeks to serve asthe national nexus for AI and intelligent CI, and welcomes engagement across its wide set of programs.

     
    more » « less
  2. Abstract

    This paper highlights the overall endeavors of the NSF AI Institute for Future Edge Networks and Distributed Intelligence (AI‐EDGE) to create a research, education, knowledge transfer, and workforce development environment for developing technological leadership in next‐generation edge networks (6G and beyond) and artificial intelligence (AI). The research objectives of AI‐EDGE are twofold: “AI for Networks” and “Networks for AI.” The former develops new foundational AI techniques to revolutionize technologies for next‐generation edge networks, while the latter develops advanced networking techniques to enhance distributed and interconnected AI capabilities at edge devices. These research investigations are conducted across eight symbiotic thrust areas that work together to address the main challenges towards those goals. Such a synergistic approach ensures a virtuous research cycle so that advances in one area will accelerate advances in the other, thereby paving the way for a new generation of networks that are not only intelligent but also efficient, secure, self‐healing, and capable of solving large‐scale distributed AI challenges. This paper also outlines the institute's endeavors in education and workforce development, as well as broadening participation and enforcing collaboration.

     
    more » « less
  3. Recently, with the advent of the Internet of everything and 5G network, the amount of data generated by various edge scenarios such as autonomous vehicles, smart industry, 4K/8K, virtual reality (VR), augmented reality (AR), etc., has greatly exploded. All these trends significantly brought real-time, hardware dependence, low power consumption, and security requirements to the facilities, and rapidly popularized edge computing. Meanwhile, artificial intelligence (AI) workloads also changed the computing paradigm from cloud services to mobile applications dramatically. Different from wide deployment and sufficient study of AI in the cloud or mobile platforms, AI workload performance and their resource impact on edges have not been well understood yet. There lacks an in-depth analysis and comparison of their advantages, limitations, performance, and resource consumptions in an edge environment. In this paper, we perform a comprehensive study of representative AI workloads on edge platforms. We first conduct a summary of modern edge hardware and popular AI workloads. Then we quantitatively evaluate three categories (i.e., classification, image-to-image, and segmentation) of the most popular and widely used AI applications in realistic edge environments based on Raspberry Pi, Nvidia TX2, etc. We find that interaction between hardware and neural network models incurs non-negligible impact and overhead on AI workloads at edges. Our experiments show that performance variation and difference in resource footprint limit availability of certain types of workloads and their algorithms for edge platforms, and users need to select appropriate workload, model, and algorithm based on requirements and characteristics of edge environments. 
    more » « less
  4. Pervasive IoT applications enable us to perceive, analyze, control, and optimize the traditional physical systems. Recently, security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk. Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications. As an extension of the cloud, the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications. Although there are some research efforts in this area, edge-based security designs for IoT applications are still in its infancy. This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs. We first present an edge-centric IoT architecture. Then, we extensively review the edge-based IoT security research efforts in the context of security architecture designs, firewalls, intrusion detection systems, authentication and authorization protocols, and privacy-preserving mechanisms. Finally, we propose our insight into future research directions and open research issues. 
    more » « less
  5. The foundations of Artificial Intelligence (AI), a field whose applications are of great use and concern for society, can be traced back to the early years of the second half of the 20th century. Since then, the field has seen increased research output and funding cycles followed by setbacks. The new millennium has seen unprecedented interest in AI progress and expectations with significant financial investments from the public and private sectors. However, the continual acceleration of AI capabilities and real-world applications is not guaranteed. Mainly, accountability of AI systems in the context of the interplay between AI and the broader society is essential for adopting AI systems via the trust placed in them. Continual progress in AI research and development (R&D) can help tackle humanity's most significant challenges to improve social good. The authors of this paper suggest that the careful design of forward-looking research policies serves a crucial function in avoiding potential future setbacks in AI research, development, and use. The United States (US) has kept its leading role in R&D, mainly shaping the global trends in the field. Accordingly, this paper presents a critical assessment of the US National AI R&D Strategic Plan and prescribes six recommendations to improve future research strategies in the US and around the globe. 
    more » « less