skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Dynamical Friction Models for Black Hole Binary Formation in Active Galactic Nucleus Disks
Abstract

Stellar-mass black holes (sBHs) embedded in gaseous disks of active galactic nuclei (AGN) can be important sources of detectable gravitational radiation for LIGO/Virgo when they form binaries and coalesce due to orbital decay. In this paper, we study the effect of dynamical friction (DF) on the formation of BH binaries in AGN disks usingN-body simulations. We employ two simplified models of DF, with the force on the BH depending on Δv, the velocity of the sBH relative to the background Keplerian gas. We integrate the motion of two sBHs initially on circular orbits around the central supermassive black hole (SMBH) and evaluate the probability of binary formation under various conditions. We find that both models of DF (with different dependence of the frictional coefficient on ∣Δv∣) can foster the formation of binaries when the effective friction timescaleτsatisfies ΩKτ≲ 20–30 (where ΩKis the Keplerian frequency around the SMBH): prograde binaries are formed when the DF is stronger (smallerτ), while retrograde binaries dominate when the DF is weaker (largerτ). We determine the distribution of both prograde and retrograde binaries as a function of initial orbital separation and the DF strength. Using our models of DF, we show that for a given sBH number density in the AGN disk, the formation rate of sBH binaries increases with decreasingτand can reach a moderate value with a sufficiently strong DF.

 
more » « less
NSF-PAR ID:
10491014
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
962
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 143
Size(s):
["Article No. 143"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    In this paper, we study how gaseous dynamical friction (DF) affects the motion of fly-by stellar-mass black holes (sBHs) embedded in active galactic nucleus (AGN) discs. We perform three-body integrations of the interaction of two co-planar sBHs in nearby, initially circular orbits around the supermassive black hole. We find that DF can facilitate the formation of gravitationally bound near-Keplerian binaries in AGN discs, and we delineate the discrete ranges of impact parameters and AGN disc parameters for which such captures occur. We also report trends in the bound binaries’ eccentricity and sense of rotation (prograde or retrograde with respect to the background AGN disc) as a function of the impact parameter of the initial encounter. While based on an approximate description of gaseous friction, our results suggest that binary formation in AGN discs should be common and may produce both prograde and retrograde, as well as both circular and eccentric binaries.

     
    more » « less
  2. Abstract

    We study the long-term evolution of two or more stellar black holes (BHs) on initially separated but unstable circular orbits around a supermassive BH (SMBH). Such a close-packed orbital configuration can naturally arise from BH migrations in the AGN disk. Dynamical instability of the orbits leads to recurring close encounters between two BHs, during which the BH separationrpbecomes less than the Hill radiusRH. In rare very close encounters, a tight merging BH binary can form with the help of gravitational wave emission. We useN-body simulations to study the time evolution of close encounters of various degrees ofcloseness. For a typical “SMBH+2BH” system, the averaged cumulative number of close encounters (withrpRH) scales approximately as ∝t0.5. The minimum encounter separationrpfollows a cumulative distributionP(<rp) ∝rpforrpRH. We obtain a semi-analytical expression for the averaged rate of binary captures that lead to BH mergers. Our results suggest that close-packed BHs in AGN disks may take a long time (≳107orbits around the SMBH) to experience a sufficiently close encounter and form a bound binary. This time can be shorter if the initial BH orbits are highly aligned. The BH binary mergers produced in this scenario have high eccentricities when entering the LIGO band and broad distribution of orbital inclinations relative to the original AGN disk. We explore the effects of the gas disk and find that simple gas drags on the BHs do not necessarily lead to an enhanced BH binary capture rate.

     
    more » « less
  3. ABSTRACT

    Stars and stellar remnants orbiting a supermassive black hole (SMBH) can interact with an active galactic nucleus (AGN) disc. Over time, prograde orbiters (inclination i < 90°) decrease inclination, as well as semimajor axis (a) and eccentricity (e) until orbital alignment with the gas disc (‘disc capture’). Captured stellar-origin black holes (sBH) add to the embedded AGN population that drives sBH–sBH mergers detectable in gravitational waves using LIGO–Virgo–KAGRA or sBH–SMBH mergers detectable with Laser Interferometer Space Antenna. Captured stars can be tidally disrupted by sBH or the SMBH or rapidly grow into massive ‘immortal’ stars. Here, we investigate the behaviour of polar and retrograde orbiters (i ≥ 90°) interacting with the disc. We show that retrograde stars are captured faster than prograde stars, flip to prograde orientation (i < 90°) during capture, and decrease a dramatically towards the SMBH. For sBH, we find a critical angle iret ∼ 113°, below which retrograde sBH decay towards embedded prograde orbits (i → 0°), while for io > iret sBH decay towards embedded retrograde orbits (i → 180°). sBH near polar orbits (i ∼ 90°) and stars on nearly embedded retrograde orbits (i ∼ 180°) show the greatest decreases in a. Whether a star is captured by the disc within an AGN lifetime depends primarily on disc density, and secondarily on stellar type and initial a. For sBH, disc capture time is longest for polar orbits, low-mass sBH, and lower density discs. Larger mass sBH should typically spend more time in AGN discs, with implications for the spin distribution of embedded sBH.

     
    more » « less
  4. ABSTRACT

    As active galactic nuclei (AGN) ‘turn on’, some stars end up embedded in accretion discs around supermassive black holes (SMBHs) on retrograde orbits. Such stars experience strong headwinds, aerodynamic drag, ablation, and orbital evolution on short time-scales. The loss of orbital angular momentum in the first ∼0.1 Myr of an AGN leads to a heavy rain of stars (‘starfall’) into the inner disc and on to the SMBH. A large AGN loss cone (θAGN, lc) can result from binary scatterings in the inner disc and yield tidal disruption events (TDEs). Signatures of starfall include optical/UV flares that rise in luminosity over time, particularly in the inner disc. If the SMBH mass is $M_{\rm SMBH} \gtrsim 10^{8}\, \mathrm{M}_{\odot }$, flares truncate abruptly and the star is swallowed. If $M_{\rm SMBH}\lt 10^{8}\, \mathrm{M}_{\odot }$, and if the infalling orbit lies within θAGN, lc, the flare is followed by a TDE that can be prograde or retrograde relative to the AGN inner disc. Retrograde AGN TDEs are overluminous and short-lived as in-plane ejecta collide with the inner disc and a lower AGN state follows. Prograde AGN TDEs add angular momentum to inner disc gas and so start off looking like regular TDEs but are followed by an AGN high state. Searches for such flare signatures test models of AGN ‘turn on’, SMBH mass, as well as disc properties and the embedded population.

     
    more » « less
  5. ABSTRACT

    Stellar-mass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs are possible progenitors of black hole mergers detected in gravitational waves by LIGO/VIRGO. To better understand the hydrodynamical evolution of BBHs interacting with the disc gas, we perform a suite of high-resolution 2D simulations of binaries in local disc (shearing-box) models, considering various binary mass ratios, eccentricities and background disc properties. We use the γ-law equation of state and adopt a robust post-processing treatment to evaluate the mass accretion rate, torque and energy transfer rate on the binary to determine its long-term orbital evolution. We find that circular comparable-mass binaries contract, with an orbital decay rate of a few times the mass doubling rate. Eccentric binaries always experience eccentricity damping. Prograde binaries with higher eccentricities or smaller mass ratios generally have slower orbital decay rates, with some extreme cases exhibiting orbital expansion. The averaged binary mass accretion rate depends on the physical size of the accretor. The accretion flows are highly variable, and the dominant variability frequency is the apparent binary orbital frequency (in the rotating frame around the central massive BH) for circular binaries but gradually shifts to the radial epicyclic frequency as the binary eccentricity increases. Our findings demonstrate that the dynamics of BBHs embedded in AGN discs is quite different from that of isolated binaries in their own circumbinary discs. Furthermore, our results suggest that the hardening time-scales of the binaries are much shorter than their migration time-scales in the disc, for all reasonable binary and disc parameters.

     
    more » « less