Short-range interactions and long-range contacts drive the 3D folding of structured proteins. The proteins’ structure has a direct impact on their biological function. However, nearly 40% of the eukaryotes proteome is composed of intrinsically disordered proteins (IDPs) and protein regions that fluctuate between ensembles of numerous conformations. Therefore, to understand their biological function, it is critical to depict how the structural ensemble statistics correlate to the IDPs’ amino acid sequence. Here, using small-angle X-ray scattering and time-resolved Förster resonance energy transfer (trFRET), we study the intramolecular structural heterogeneity of the neurofilament low intrinsically disordered tail domain (NFLt). Using theoretical results of polymer physics, we find that the Flory scaling exponent of NFLt subsegments correlates linearly with their net charge, ranging from statistics of ideal to self-avoiding chains. Surprisingly, measuring the same segments in the context of the whole NFLt protein, we find that regardless of the peptide sequence, the segments’ structural statistics are more expanded than when measured independently. Our findings show that while polymer physics can, to some level, relate the IDP’s sequence to its ensemble conformations, long-range contacts between distant amino acids play a crucial role in determining intramolecular structures. This emphasizes the necessity of advanced polymer theories to fully describe IDPs ensembles with the hope that it will allow us to model their biological function.
more »
« less
From isolated polyelectrolytes to star-like assemblies: the role of sequence heterogeneity on the statistical structure of the intrinsically disordered neurofilament-low tail domain
AbstractIntrinsically disordered proteins (IDPs) are a subset of proteins that lack stable secondary structure. Given their polymeric nature, previous mean-field approximations have been used to describe the statistical structure of IDPs. However, the amino-acid sequence heterogeneity and complex intermolecular interaction network have significantly impeded the ability to get proper approximations. One such case is the intrinsically disordered tail domain of neurofilament low (NFLt), which comprises a 50 residue-long uncharged domain followed by a 96 residue-long negatively charged domain. Here, we measure two NFLt variants to identify the impact of the NFLt two main subdomains on its complex interactions and statistical structure. Using synchrotron small-angle x-ray scattering, we find that the uncharged domain of the NFLt induces attractive interactions that cause it to self-assemble into star-like polymer brushes. On the other hand, when the uncharged domain is truncated, the remaining charged N-terminal domains remain isolated in solution with typical polyelectrolyte characteristics. We further discuss how competing long- and short-ranged interactions within the polymer brushes dominate their ensemble structure and, in turn, their implications on previously observed phenomena in NFL native and diseased states. Graphic abstractVisual schematic of the SAXS measurement results of the Neurofilament-low tail domain IDP (NFLt). NFLts assemble into star-like brushes through their hydrophobic N-terminal domains (marked in blue). In increasing salinity, brush height (h) is initially increased following a decrease while gaining additional tails to their assembly. Isolating the charged sub-domain of the NFLt (marked in red) results in isolated polyelectrolytes
more »
« less
- Award ID(s):
- 2113302
- PAR ID:
- 10491028
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- The European Physical Journal E
- Volume:
- 47
- Issue:
- 2
- ISSN:
- 1292-8941
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dr. Sudipta Maiti (Ed.)IA3 is a 68 amino acid natural peptide/protein inhibitor of yeast aspartic proteinase A (YPRA) that is intrinsically dis-ordered in solution with induced N-terminal helicity when in the protein complex with YPRA. Based upon the intrinsical-ly disordered proteins (IDPs) parameters of fractional net charge (FNC), of net charge density per residue (NCPR) and of charge patterning (), the two domains of IA3 are defined to occupy different domains within conformationally based subclasses of IDPs; thus, making IA3 a bimodal-domain IDP. Site-directed spin-labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and low-field Overhauser dynamic nuclear polarization (ODNP) spectroscopy results show that these two domains possess different degrees of compaction and hydration diffusivity behavior. This work suggests that SDSL EPR line shapes – analyzed in terms of their local tumbling volume (VL) – provide insight into the compaction of the unstructured IDP ensemble in solution and that protein sequence and net charge distribution pat-terns within a conformational subclass can impact bound water hydration dynamics; thus, possibly offering an alter-native thermodynamic property that can encode conforma-tional binding and behavior of IDPs and liquid-liquid phase separations.more » « less
-
We have investigated the structural evolution in solutions of the intrinsically disordered protein, α-synuclein, as a function of protein concentration and added salt concentration. Accounting for electrostatic and excluded volume interactions based on the protein sequence, our Langevin dynamics simulations reveal that α-synuclein molecules assemble into aggregates and percolated structures with a spontaneous selection of a dominant structure characteristic of microphase separation. This microphase assembly is mainly driven by electrostatic interactions between the residues in N-terminal and C-terminal of the protein molecules, and presence of salt loosens the compactness of the microstructures. We have quantified the features of the spontaneously formed microstructures using interchain radial distribution functions, and experimentally measurable inter-residue contact maps and static structure factors. Our results are in contrast to the commonly hypothesized mechanism of liquid–liquid phase separation (LLPS) for the formation of droplets in solutions of intrinsically disordered proteins, opening a new paradigm to understand the birth and structure of membraneless organelles. In general, construction of phase diagrams of intrinsically disordered proteins and other biomacromolecular systems needs to incorporate features of microphase separation into other mechanisms of macrophase separation and percolation.more » « less
-
Intrinsically disordered proteins (IDPs) engage in various fundamental biological activities, and their behavior is of particular importance for a better understanding of the verbose but well-organized signal transduction in cells. IDPs exhibit uniquely paradoxical features with low affinity but simultaneously high specificity in recognizing their binding targets. The transcription factor p53 plays a crucial role in cancer suppression, carrying out some of its biological functions using its disordered regions, such as N-terminal transactivation domain 2 (TAD2). Exploration of the binding and unbinding processes between proteins is challenging, and the inherently disordered properties of these regions further complicate the issue. Computer simulations are a powerful tool to complement the experiments to fill gaps to explore the binding/unbinding processes between proteins. Here, we investigated the binding mechanism between p300 Taz2 and p53 TAD2 through extensive molecular dynamics (MD) simulations using the physics- based UNited RESidue (UNRES) force field with additional Go̅-like potentials. Distance restraints extracted from the NMR- resolved structures were imposed on intermolecular residue pairs to accelerate binding simulations, in which Taz2 was immobilized in a native-like conformation and disordered TAD2 was fully free. Starting from six structures with TAD2 placed at different positions around Taz2, we observed a metastable intermediate state in which the middle helical segment of TAD2 is anchored in the binding pocket, highlighting the significance of the TAD2 helix in directing protein recognition. Physics-based binding simulations show that successful binding is achieved after a series of stages, including (1) protein collisions to initiate the formation of encounter complexes, (2) partial attachment of TAD2, and finally (3) full attachment of TAD2 to the correct binding pocket of Taz2. Furthermore, machine-learning-based PathDetect-SOM was used to identify two binding pathways, the encounter complexes, and the intermediate states.more » « less
-
Nuclear magnetic resonance (NMR) spectroscopy is widely recognized for its ability to provide atomic-level resolution of structures and interactions in intrinsically disordered proteins (IDPs). However, its application is often limited when studying large proteins that contain both structured and disordered regions. This challenge arises due to the broad peaks exhibited by structured regions in such proteins, which result from local compaction and restricted motions, complicating spectral analysis. Additionally, broadening in IDP complexes caused by exchange between free and bound states and/or the large size of the bound state, further obscures NMR signals and hinders the mapping of interaction sites. Moreover, IDPs are highly sensitive to proteolytic cleavage, necessitating careful handling and optimization during expression, purification, and data collection. In this study, we demonstrate how we successfully overcame these hurdles using examples from our work on the N-terminal region of the dynein intermediate chain (IC), which contains both ɑ-helical and intrinsically disordered regions. By employing paramagnetic relaxation enhancement (PRE) NMR to probe conformational dynamics, water-amide chemical exchange to measure solvent accessibility, and saturation transfer difference (STD) NMR to map specific interactions with p150Glued and Nudel, we identified novel transient structures and interaction networks within IC. Our findings highlight the utility of these advanced NMR techniques in elucidating the dynamic behavior of IDPs and their complexes, providing valuable insights into their structural and functional roles.more » « less
An official website of the United States government
