skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 14, 2025

Title: Deciphering the Mystery in p300 Taz2–p53 TAD2 Recognition
Intrinsically disordered proteins (IDPs) engage in various fundamental biological activities, and their behavior is of particular importance for a better understanding of the verbose but well-organized signal transduction in cells. IDPs exhibit uniquely paradoxical features with low affinity but simultaneously high specificity in recognizing their binding targets. The transcription factor p53 plays a crucial role in cancer suppression, carrying out some of its biological functions using its disordered regions, such as N-terminal transactivation domain 2 (TAD2). Exploration of the binding and unbinding processes between proteins is challenging, and the inherently disordered properties of these regions further complicate the issue. Computer simulations are a powerful tool to complement the experiments to fill gaps to explore the binding/unbinding processes between proteins. Here, we investigated the binding mechanism between p300 Taz2 and p53 TAD2 through extensive molecular dynamics (MD) simulations using the physics- based UNited RESidue (UNRES) force field with additional Go̅-like potentials. Distance restraints extracted from the NMR- resolved structures were imposed on intermolecular residue pairs to accelerate binding simulations, in which Taz2 was immobilized in a native-like conformation and disordered TAD2 was fully free. Starting from six structures with TAD2 placed at different positions around Taz2, we observed a metastable intermediate state in which the middle helical segment of TAD2 is anchored in the binding pocket, highlighting the significance of the TAD2 helix in directing protein recognition. Physics-based binding simulations show that successful binding is achieved after a series of stages, including (1) protein collisions to initiate the formation of encounter complexes, (2) partial attachment of TAD2, and finally (3) full attachment of TAD2 to the correct binding pocket of Taz2. Furthermore, machine-learning-based PathDetect-SOM was used to identify two binding pathways, the encounter complexes, and the intermediate states.  more » « less
Award ID(s):
2237369
PAR ID:
10533476
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
Journal of Chemical Theory and Computation
ISSN:
1549-9618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Disordered binding regions (DBRs), which are embedded within intrinsically disordered proteins or regions (IDPs or IDRs), enable IDPs or IDRs to mediate multiple protein-protein interactions. DBR-protein complexes were collected from the Protein Data Bank for which two or more DBRs having different amino acid sequences bind to the same (100% sequence identical) globular protein partner, a type of interaction herein called many-to-one binding. Two distinct binding profiles were identified: independent and overlapping. For the overlapping binding profiles, the distinct DBRs interact by means of almost identical binding sites (herein called “similar”), or the binding sites contain both common and divergent interaction residues (herein called “intersecting”). Further analysis of the sequence and structural differences among these three groups indicate how IDP flexibility allows different segments to adjust to similar, intersecting, and independent binding pockets. 
    more » « less
  2. Short-range interactions and long-range contacts drive the 3D folding of structured proteins. The proteins’ structure has a direct impact on their biological function. However, nearly 40% of the eukaryotes proteome is composed of intrinsically disordered proteins (IDPs) and protein regions that fluctuate between ensembles of numerous conformations. Therefore, to understand their biological function, it is critical to depict how the structural ensemble statistics correlate to the IDPs’ amino acid sequence. Here, using small-angle X-ray scattering and time-resolved Förster resonance energy transfer (trFRET), we study the intramolecular structural heterogeneity of the neurofilament low intrinsically disordered tail domain (NFLt). Using theoretical results of polymer physics, we find that the Flory scaling exponent of NFLt subsegments correlates linearly with their net charge, ranging from statistics of ideal to self-avoiding chains. Surprisingly, measuring the same segments in the context of the whole NFLt protein, we find that regardless of the peptide sequence, the segments’ structural statistics are more expanded than when measured independently. Our findings show that while polymer physics can, to some level, relate the IDP’s sequence to its ensemble conformations, long-range contacts between distant amino acids play a crucial role in determining intramolecular structures. This emphasizes the necessity of advanced polymer theories to fully describe IDPs ensembles with the hope that it will allow us to model their biological function.

     
    more » « less
  3. de Groot, Bert L. (Ed.)
    Intrinsically disordered proteins (IDPs) are highly dynamic systems that play an important role in cell signaling processes and their misfunction often causes human disease. Proper understanding of IDP function not only requires the realistic characterization of their three-dimensional conformational ensembles at atomic-level resolution but also of the time scales of interconversion between their conformational substates. Large sets of experimental data are often used in combination with molecular modeling to restrain or bias models to improve agreement with experiment. It is shown here for the N-terminal transactivation domain of p53 (p53TAD) and Pup, which are two IDPs that fold upon binding to their targets, how the latest advancements in molecular dynamics (MD) simulations methodology produces native conformational ensembles by combining replica exchange with series of microsecond MD simulations. They closely reproduce experimental data at the global conformational ensemble level, in terms of the distribution properties of the radius of gyration tensor, and at the local level, in terms of NMR properties including 15 N spin relaxation, without the need for reweighting. Further inspection revealed that 10–20% of the individual MD trajectories display the formation of secondary structures not observed in the experimental NMR data. The IDP ensembles were analyzed by graph theory to identify dominant inter-residue contact clusters and characteristic amino-acid contact propensities. These findings indicate that modern MD force fields with residue-specific backbone potentials can produce highly realistic IDP ensembles sampling a hierarchy of nano- and picosecond time scales providing new insights into their biological function. 
    more » « less
  4. Intrinsically disordered proteins (IDPs) exploit their plasticity to deploy a rich panoply of soft interactions and binding phenomena. Advances in tailoring molecular simulations for IDPs combined with experimental cross-validation offer an atomistic view of the mechanisms that control IDP binding, function, and dysfunction. The emerging theme is that unbound IDPs autonomously form transient local structures and self-interactions that determine their binding behavior. Recent results have shed light on whether and how IDPs fold, stay disordered or drive condensation upon binding; how they achieve binding specificity and select among competing partners. The disorder-binding paradigm is now being proactively used by researchers to target IDPs for rational drug design and engineer molecular responsive elements for biosensing applications. 
    more » « less
  5. Intrinsically disordered proteins (IDPs) are highly prevalent and play important roles in biology and human diseases. It is now also recognized that many IDPs remain dynamic even in specific complexes and functional assemblies. Computer simulations are essential for deriving a molecular description of the disordered protein ensembles and dynamic interactions for a mechanistic understanding of IDPs in biology, diseases, and therapeutics. Here, we provide an in-depth review of recent advances in the multi-scale simulation of disordered protein states, with a particular emphasis on the development and application of advanced sampling techniques for studying IDPs. These techniques are critical for adequate sampling of the manifold functionally relevant conformational spaces of IDPs. Together with dramatically improved protein force fields, these advanced simulation approaches have achieved substantial success and demonstrated significant promise towards the quantitative and predictive modeling of IDPs and their dynamic interactions. We will also discuss important challenges remaining in the atomistic simulation of larger systems and how various coarse-grained approaches may help to bridge the remaining gaps in the accessible time- and length-scales of IDP simulations. 
    more » « less