skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inhibiting the Keap1/Nrf2 Protein‐Protein Interaction with Protein‐Like Polymers
Abstract Successful and selective inhibition of the cytosolic protein‐protein interaction (PPI) between nuclear factor erythroid 2‐related factor 2 (Nrf2) and Kelch‐like ECH‐associating protein 1 (Keap1) can enhance the antioxidant response, with the potential for a therapeutic effect in a range of settings including in neurodegenerative disease (ND). Small molecule inhibitors have been developed, yet many have off‐target effects, or are otherwise limited by poor cellular permeability. Peptide‐based strategies have also been attempted to enhance specificity, yet face challenges due to susceptibility to degradation and lack of cellular penetration. Herein, these barriers are overcome utilizing a polymer‐based proteomimetics. The protein‐like polymer (PLP) consists of a synthetic, lipophilic polymer backbone displaying water soluble Keap1‐binding peptides on each monomer unit forming a brush polymer architecture. The PLPs are capable of engaging Keap1 and displacing the cellular protective transcription factor Nrf2, which then translocates to the nucleus, activating the antioxidant response element (ARE). PLPs exhibit increased Keap1 binding affinity by several orders of magnitude compared to free peptides, maintain serum stability, are cell‐penetrant, and selectively activate the ARE pathway in cells, including in primary cortical neuronal cultures. Keap1/Nrf2‐inhibitory PLPs have the potential to impact the treatment of disease states associated with dysregulation of oxidative stress, such as NDs.  more » « less
Award ID(s):
2403955 2403954
PAR ID:
10491088
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
36
Issue:
21
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Environmental stress from ultraviolet radiation, elevated temperatures or metal toxicity can lead to reactive oxygen species in cells, leading to oxidative DNA damage, premature aging, neurodegenerative diseases, and cancer. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activates many cytoprotective proteins within the nucleus to maintain homeostasis during oxidative stress. In vertebrates, Nrf2 levels are regulated by the Kelch-family protein Keap1 (Kelch-like ECH-associated protein 1) in the absence of stress according to a canonical redox control pathway. Little, however, is known about the redox control pathway used in early diverging metazoans. Our study examines the presence of known oxidative stress regulatory elements within non-bilaterian metazoans including free living and parasitic cnidarians, ctenophores, placozoans, and sponges. Cnidarians, with their pivotal position as the sister phylum to bilaterians, play an important role in understanding the evolutionary history of response to oxidative stress. Through comparative genomic and transcriptomic analysis our results show that Nrf homologs evolved early in metazoans, whereas Keap1 appeared later in the last common ancestor of cnidarians and bilaterians. However, key Nrf–Keap1 interacting domains are not conserved within the cnidarian lineage, suggesting this important pathway evolved with the radiation of bilaterians. Several known downstream Nrf targets are present in cnidarians suggesting that cnidarian Nrf plays an important role in oxidative stress response even in the absence of Keap1. Comparative analyses of key oxidative stress sensing and response proteins in early diverging metazoans thus provide important insights into the molecular basis of how these lineages interact with their environment and suggest a shared evolutionary history of regulatory pathways. Exploration of these pathways may prove important for the study of cancer therapeutics and broader research in oxidative stress, senescence, and the functional responses of early diverging metazoans to environmental change. 
    more » « less
  2. Abstract Prenatal brain development is particularly sensitive to chemicals that can disrupt synapse formation and cause neurodevelopmental disorders. In most cases, such chemicals increase cellular oxidative stress. For example, prenatal exposure to the anti-epileptic drug valproic acid (VPA), induces oxidative stress and synaptic alterations, promoting autism spectrum disorders (ASD) in humans and autism-like behaviors in rodents. Using VPA to model chemically induced ASD, we tested whether activation of cellular mechanisms that increase antioxidant gene expression would be sufficient to prevent VPA-induced synaptic alterations. As a master regulator of cellular defense pathways, the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) promotes expression of detoxification enzymes and antioxidant gene products. To increase NRF2 activity, we used the phytochemical and potent NRF2 activator, sulforaphane (SFN). In our models of human neurodevelopment, SFN activated NRF2, increasing expression of antioxidant genes and preventing oxidative stress. SFN also enhanced expression of genes associated with synapse formation. Consistent with these gene expression profiles, SFN protected developing neural networks from VPA-induced reductions in synapse formation. Furthermore, in mouse cortical neurons, SFN rescued VPA-induced reductions in neural activity. These results demonstrate the ability of SFN to protect developing neural networks during the vulnerable period of synapse formation, while also identifying molecular signatures of SFN-mediated neuroprotection that could be relevant for combatting other environmental toxicants. 
    more » « less
  3. Alpha-synuclein (ASyn) is a protein that is known to play a critical role in Parkinson’s disease (PD) due to its propensity for misfolding and aggregation. Furthermore, this process leads to oxidative stress and the formation of free radicals that cause neuronal damage. In this study, we have utilized a biomimetic approach to design new peptides derived from marine natural resources. The peptides were designed using a peptide scrambling approach where antioxidant moieties were combined with fibrillary inhibition motifs in order to design peptides that would have a dual targeting effect on ASyn misfolding. Of the 20 designed peptides, 12 were selected for examining binding interactions through molecular docking and molecular dynamics approaches, which revealed that the peptides were binding to the pre-NAC and NAC (non-amyloid component) domain residues such as Tyr39, Asn65, Gly86, and Ala85, among others. Because ASyn filaments derived from Lewy body dementia (LBD) have a different secondary structure compared to pathogenic ASyn fibrils, both forms were tested computationally. Five of those peptides were utilized for laboratory validation based on those results. The binding interactions with fibrils were confirmed using surface plasmon resonance studies, where EQALMPWIWYWKDPNGS, PYYYWKDPNGS, and PYYYWKELAQM showed higher binding. Secondary structural analyses revealed their ability to induce conformational changes in ASyn fibrils. Additionally, PYYYWKDPNGS and PYYYWKELAQM also demonstrated antioxidant properties. This study provides insight into the binding interactions of varying forms of ASyn implicated in PD. The peptides may be further investigated for mitigating fibrillation at the cellular level and may have the potential to target ASyn. 
    more » « less
  4. The misfolding, aggregation, and spread of tau protein fibrils underlie tauopathies, a diverse class of neurodegenerative diseases for which effective treatments remain elusive. Among these are corticobasal dementia (CBD) and progressive supranuclear palsy (PSP), canonical examples of 4-repeat (4R) tauopathies characterized by tau isoforms exclusively with four microtubule-binding repeat domains. We target this 4R tau isoform-specific mechanism by focusing on misfolded tau’s distinctive stem-loop-stem structural motif formed by the junction of the 4R-defining alternatively spliced exon and the adjacent constitutive exon. A synthetic peptide based on this stem-loop-stem sequence can induce aggregation and spread in an isoform-specific manner. Here, we develop a protein-like polymer (PLP) in which multiple copies of this synthetic peptide form a brush-like structure capable of preventing tau aggregation by binding and capping fibril endsin vitro, in human brain organoids, and in cellular models with an EC50 of 105 ± 14 nM. PLPs demonstrate robust activity against fibrils derived from CBD and PSP patient brains and a PS19 mouse tauopathy model. Previous tau-targeted treatments have primarily focused on broad tau clearance, aggregation inhibition, or microtubule stabilization, often lacking isoform specificity and precision. In contrast, this approach targets the 4R tau isoform’s unique structural motif, offering a tailored therapeutic intervention for diseases like CBD and PSP. Supported by prior studies showing blood-brain barrier penetrance and safety profiles, this tau-binding PLP offers a promising translational path toward clinical applications in tauopathy treatment. 
    more » « less
  5. null (Ed.)
    Nature utilizes self-assembled protein-based structures as subcellular compartments in prokaryotes to sequester catalysts for specialized biochemical reactions. These protein cage structures provide unique isolated environments for the encapsulated enzymes. Understanding these systems is useful in the bioinspired design of synthetic catalytic organelle-like nanomaterials. The DNA binding protein from starved cells (Dps), isolated from Sulfolobus solfataricus , is a 9 nm dodecameric protein cage making it the smallest known naturally occurring protein cage. It is naturally over-expressed in response to oxidative stress. The small size, natural biodistribution to the kidney, and ability to cross the glomerular filtration barrier in in vivo experiments highlight its potential as a synthetic antioxidant. Cytochrome C (CytC) is a small heme protein with peroxidase-like activity involved in the electron transport chain and also plays a critical role in cellular apoptosis. Here we report the encapsulation of CytC inside the 5 nm interior cavity of Dps and demonstrate the catalytic activity of the resultant Dps nanocage with enhanced antioxidant behavior. The small cavity can accommodate a single CytC and this was achieved through self-assembly of chimeric cages comprising Dps subunits and a Dps subunit to which the CytC was fused. For selective isolation of CytC containing Dps cages, we utilized engineered polyhistidine tag present only on the enzyme fused Dps subunits (6His-Dps-CytC). The catalytic activity of encapsulated CytC was studied using guaiacol and 3,3′,5,5′-tetramethylbenzidine (TMB) as two different peroxidase substrates and compared to the free (unencapsulated) CytC activity. The encapsulated CytC showed better pH dependent catalytic activity compared to free enzyme and provides a proof-of-concept model to engineer these small protein cages for their potential as catalytic nanoreactors. 
    more » « less