We prove novel algorithmic guarantees for several online problems in the smoothed analysis model. In this model, at each time step an adversary chooses an input distribution with density function bounded above pointwise by \(\tfrac{1}{\sigma }\)times that of the uniform distribution; nature then samples an input from this distribution. Here, σ is a parameter that interpolates between the extremes of worst-case and average case analysis. Crucially, our results hold foradaptiveadversaries that can base their choice of input distribution on the decisions of the algorithm and the realizations of the inputs in the previous time steps. An adaptive adversary can nontrivially correlate inputs at different time steps with each other and with the algorithm’s current state; this appears to rule out the standard proof approaches in smoothed analysis. This paper presents a general technique for proving smoothed algorithmic guarantees against adaptive adversaries, in effect reducing the setting of an adaptive adversary to the much simpler case of an oblivious adversary (i.e., an adversary that commits in advance to the entire sequence of input distributions). We apply this technique to prove strong smoothed guarantees for three different problems:(1)Online learning: We consider the online prediction problem, where instances are generated from an adaptive sequence of σ-smooth distributions and the hypothesis class has VC dimensiond. We bound the regret by\(\tilde{O}(\sqrt {T d\ln (1/\sigma)} + d\ln (T/\sigma))\)and provide a near-matching lower bound. Our result shows that under smoothed analysis, learnability against adaptive adversaries is characterized by the finiteness of the VC dimension. This is as opposed to the worst-case analysis, where online learnability is characterized by Littlestone dimension (which is infinite even in the extremely restricted case of one-dimensional threshold functions). Our results fully answer an open question of Rakhlin et al. [64].(2)Online discrepancy minimization: We consider the setting of the online Komlós problem, where the input is generated from an adaptive sequence of σ-smooth and isotropic distributions on the ℓ2unit ball. We bound the ℓ∞norm of the discrepancy vector by\(\tilde{O}(\ln ^2(\frac{nT}{\sigma }))\). This is as opposed to the worst-case analysis, where the tight discrepancy bound is\(\Theta (\sqrt {T/n})\). We show such\(\mathrm{polylog}(nT/\sigma)\)discrepancy guarantees are not achievable for non-isotropic σ-smooth distributions.(3)Dispersion in online optimization: We consider online optimization with piecewise Lipschitz functions where functions with ℓ discontinuities are chosen by a smoothed adaptive adversary and show that the resulting sequence is\(({\sigma }/{\sqrt {T\ell }}, \tilde{O}(\sqrt {T\ell }))\)-dispersed. That is, every ball of radius\({\sigma }/{\sqrt {T\ell }}\)is split by\(\tilde{O}(\sqrt {T\ell })\)of the partitions made by these functions. This result matches the dispersion parameters of Balcan et al. [13] for oblivious smooth adversaries, up to logarithmic factors. On the other hand, worst-case sequences are trivially (0,T)-dispersed.1
more »
« less
Online Prediction in Sub-linear Space
We provide the first sub-linear space and sub-linear regret algorithm for online learning with expert advice (against an oblivious adversary), addressing an open question raised recently by Srinivas, Woodruff, Xu and Zhou (STOC 2022). We also demonstrate a separation between oblivious and (strong) adaptive adversaries by proving a linear memory lower bound of any sub-linear regret algorithm against an adaptive adversary. Our algorithm is based on a novel pool selection procedure that bypasses the traditional wisdom of leader selection for online learning, and a generic reduction that transforms any weakly sub-linear regret o(T) algorithm to T1-α regret algorithm, which may be of independent interest. Our lower bound utilizes the connection of no-regret learning and equilibrium computation in zero-sum games, leading to a proof of a strong lower bound against an adaptive adversary.
more »
« less
- Award ID(s):
- 2311648
- PAR ID:
- 10491118
- Publisher / Repository:
- SIAM
- Date Published:
- Journal Name:
- Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the problem of online binary classification where strategic agents can manipulate their observable features in predefined ways, modeled by a manipulation graph, in order to receive a positive classification. We show this setting differs in fundamental ways from classic (non-strategic) online classification. For instance, whereas in the non-strategic case, a mistake bound of ln |H| is achievable via the halving algorithm when the target function belongs to a known class H, we show that no deterministic algorithm can achieve a mistake bound o(Δ) in the strategic setting, where Δ is the maximum degree of the manipulation graph (even when |H| = O(Δ)). We complement this with a general algorithm achieving mistake bound O(Δ ln |H|). We also extend this to the agnostic setting, and show that this algorithm achieves a Δ multiplicative regret (mistake bound of O(Δ · OPT + Δ · ln |H|)), and that no deterministic algorithm can achieve o(Δ) multiplicative regret. Next, we study two randomized models based on whether the random choices are made before or after agents respond, and show they exhibit fundamental differences. In the first, fractional model, at each round the learner deterministically chooses a probability distribution over classifiers inducing expected values on each vertex (probabilities of being classified as positive), which the strategic agents respond to. We show that any learner in this model has to suffer linear regret. On the other hand, in the second randomized algorithms model, while the adversary who selects the next agent must respond to the learner's probability distribution over classifiers, the agent then responds to the actual hypothesis classifier drawn from this distribution. Surprisingly, we show this model is more advantageous to the learner, and we design randomized algorithms that achieve sublinear regret bounds against both oblivious and adaptive adversaries.more » « less
-
Oshman, Rotem (Ed.)Broadcast protocols enable a set of n parties to agree on the input of a designated sender, even in the face of malicious parties who collude to attack the protocol. In the honest-majority setting, a fruitful line of work harnessed randomization and cryptography to achieve low-communication broadcast protocols with sub-quadratic total communication and with "balanced" sub-linear communication cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most communication-efficient constructions are based on the protocol of Dolev and Strong (SICOMP '83), and sub-quadratic broadcast has not been achieved even using randomization and cryptography. On the other hand, the only nontrivial ω(n) communication lower bounds are restricted to deterministic protocols, or against strong adaptive adversaries that can perform "after the fact" removal of messages. We provide communication lower bounds in this space, which hold against arbitrary cryptography and setup assumptions, as well as a simple protocol showing near tightness of our first bound. - Static adversary. We demonstrate a tradeoff between resiliency and communication for randomized protocols secure against n-o(n) static corruptions. For example, Ω(n⋅ polylog(n)) messages are needed when the number of honest parties is n/polylog(n); Ω(n√n) messages are needed for O(√n) honest parties; and Ω(n²) messages are needed for O(1) honest parties. Complementarily, we demonstrate broadcast with O(n⋅polylog(n)) total communication and balanced polylog(n) per-party cost, facing any constant fraction of static corruptions. - Weakly adaptive adversary. Our second bound considers n/2 + k corruptions and a weakly adaptive adversary that cannot remove messages "after the fact." We show that any broadcast protocol within this setting can be attacked to force an arbitrary party to send messages to k other parties. Our bound implies limitations on the feasibility of balanced low-communication protocols: For example, ruling out broadcast facing 51% corruptions, in which all non-sender parties have sublinear communication locality.more » « less
-
We consider the question of Gaussian mean testing, a fundamental task in high-dimensional distribution testing and signal processing, subject to adversarial corruptions of the samples. We focus on the relative power of different adversaries, and show that, in contrast to the common wisdom in robust statistics, there exists a strict separation between adaptive adversaries (strong contamination) and oblivious ones (weak contamination) for this task. Specifically, we resolve both the information-theoretic and computational landscapes for robust mean testing. In the exponential-time setting, we establish the tight sample complexity of testing N(0,I) against N(αv,I), where ∥v∥2=1, with an ε-fraction of adversarial corruptions, to be Θ~(max(d√α2,dε3α4,min(d2/3ε2/3α8/3,dεα2))) while the complexity against adaptive adversaries is Θ~(max(d√α2,dε2α4)) which is strictly worse for a large range of vanishing ε,α. To the best of our knowledge, ours is the first separation in sample complexity between the strong and weak contamination models. In the polynomial-time setting, we close a gap in the literature by providing a polynomial-time algorithm against adaptive adversaries achieving the above sample complexity Θ~(max(d−−√/α2,dε2/α4)), and a low-degree lower bound (which complements an existing reduction from planted clique) suggesting that all efficient algorithms require this many samples, even in the oblivious-adversary setting.more » « less
-
We consider the question of Gaussian mean testing, a fundamental task in high-dimensional distribution testing and signal processing, subject to adversarial corruptions of the samples. We focus on the relative power of different adversaries, and show that, in contrast to the common wisdom in robust statistics, there exists a strict separation between adaptive adversaries (strong contamination) and oblivious ones (weak contamination) for this task. Specifically, we resolve both the information-theoretic and computational landscapes for robust mean testing. In the exponential-time setting, we establish the tight sample complexity of testing N(0,I) against N(αv,I), where ∥v∥2=1, with an ε-fraction of adversarial corruptions, to be Θ~(max(d−−√α2,dε3α4,min(d2/3ε2/3α8/3,dεα2))), while the complexity against adaptive adversaries is Θ~(max(d−−√α2,dε2α4)), which is strictly worse for a large range of vanishing ε,α. To the best of our knowledge, ours is the first separation in sample complexity between the strong and weak contamination models. In the polynomial-time setting, we close a gap in the literature by providing a polynomial-time algorithm against adaptive adversaries achieving the above sample complexity Θ~(max(d−−√/α2,dε2/α4)), and a low-degree lower bound (which complements an existing reduction from planted clique) suggesting that all efficient algorithms require this many samples, even in the oblivious-adversary setting.more » « less