skip to main content


Title: When forests hold their breath: will increasing drought further disrupt carbon sequestration?
Abstract

The 2020–2021 record drought in Taiwan halted carbon sequestration in its predominantly evergreen subtropical forests. The analysis uncovers a significant correlation between net ecosystem exchange, radiative factors, groundwater levels, and wildfires, indicating that the severity of droughts leads to a shift from carbon absorption to emission in these forests, thereby inviting a broader examination of the climate–carbon nexus in future scenarios.

 
more » « less
NSF-PAR ID:
10491158
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
19
Issue:
3
ISSN:
1748-9326
Format(s):
Medium: X Size: Article No. 031002
Size(s):
["Article No. 031002"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Forest degradation accounts for ~70% of total carbon losses from tropical forests. Substantial emissions are from selective logging, a land‐use activity that decreases forest carbon density. To maintain carbon values in selectively logged forests, climate change mitigation policies and government agencies promote the adoption of reduced‐impact logging (RIL) practices. However, whetherRILwill maintain both carbon and timber values in managed tropical forests over time remains uncertain. In this study, we quantify the recovery of timber stocks and aboveground carbon at an experimental site where forests were subjected to different intensities ofRIL(4, 8, and 16 trees/ha). Our census data span 20 years postlogging and 17 years after the liberation of future crop trees from competition in a tropical forest on the Guiana Shield, a globally important forest carbon reservoir. We model recovery of timber and carbon with a breakpoint regression that allowed us to capture elevated tree mortality immediately after logging. Recovery rates of timber and carbon were governed by the presence of residual trees (i.e., trees that persisted through the first harvest). The liberation treatment stimulated faster recovery of timber albeit at a carbon cost. Model results suggest a threshold logging intensity beyond which forests managed for timber and carbon derive few benefits fromRIL, with recruitment and residual growth not sufficient to offset losses. Inclusion of the breakpoint at which carbon and timber gains outpaced postlogging mortality led to high predictive accuracy, including out‐of‐sampleR2values >90%, and enabled inference on demographic changes postlogging. Our modeling framework is broadly applicable to studies that aim to quantify impacts of logging on forest recovery. Overall, we demonstrate that initial mortality drives variation in recovery rates, that the second harvest depends on old growth wood, and that timber intensification lowers carbon stocks.

     
    more » « less
  2. Abstract

    Forests play a critical role in mitigating climate change, and, at the same time, are predicted to experience large-scale impacts of climate change that will affect the efficiency of forests in mitigation efforts. Projections of future carbon sequestration potential typically do not account for the changing economic costs of timber and agricultural production and land use change. We integrated a dynamic forward-looking economic optimization model of global land use with results from a dynamic global vegetation model and meta-analysis of climate impacts on crop yields to project future carbon sequestration in forests. We find that the direct impacts of climate change on forests, represented by changes in dieback and forest growth, and indirect effects due to lost crop productivity, together result in a net gain of 17 Gt C in aboveground forest carbon storage from 2000 to 2100. Increases in climate-driven forest growth rates will result in an 81%–99% reduction in costs of reaching a range of global forest carbon stock targets in 2100, while the increases in dieback rates are projected to raise the costs by 57%–132%. When combined, these two direct impacts are expected to reduce the global costs of climate change mitigation in forests by more than 70%. Inclusion of the third, indirect impact of climate change on forests through reduction in crop yields, and the resulting expansion of cropland, raises the costs by 11%–38% and widens the uncertainty range. While we cannot rule out the possibility of climate change increasing mitigation costs, the central outcomes of the simultaneous impacts of climate change on forests and agriculture are 64%–86% reductions in the mitigation costs. Overall, the results suggest that concerns about climate driven dieback in forests should not inhibit the ambitions of policy makers in expanding forest-based climate solutions.

     
    more » « less
  3. Abstract

    Early successional tropical forests could mitigate climate change via rapid accumulation of atmospheric carbon. However, liana (woody vine) abundance and biomass has been increasing in many tropical forests over the past decades, which may slow the speed at which secondary forests accumulate biomass. Lianas decrease biomass accumulation in tropical forests, and may have a particularly strong effect on young forests by stalling tree growth. As forests mature, trees may outgrow or shed lianas, thus escaping some of the negative effects of lianas. Alternatively, lianas may have the strongest effect in older successional forests if the effect of lianas is commensurate with their density, which increases dramatically in the first decades of forest succession. We tested these two hypotheses using a landscape liana‐removal experiment in 30 forest stands that ranged from 10 to 35 yr old in Central Panama. We measured tree growth and biomass accumulation in the stands every year from 2014 to 2017. We found that the effect of liana removal on large trees (≥20‐cm diameter) decreased with forest age, supporting the hypothesis that lianas have the strongest negative effects on trees, and thus biomass uptake and carbon storage, in very young successional forests. Large trees accumulated more biomass in the absence of lianas in younger forests than in older forests (compared to controls) even after accounting for the effect of canopy completeness and crown illumination, implying that the detrimental effects of lianas go well beyond resource availability and crown health. There was no significant effect of lianas on small trees (1–20‐cm diameter), likely because lianas seek light and thus do not deploy their leaves on small trees that are trapped in the forest understory. Our results show that high liana density early in forest succession reduces forest biomass accumulation by negatively impacting large trees, thus decreasing the capacity of young secondary forests to mitigate climate change. Although the negative effects of lianas on forest biomass diminish as forests age, they do not disappear, and thus lianas are an important component of tropical forest carbon budgets throughout succession.

     
    more » « less
  4. Abstract

    Mangrove soils provide many important ecosystem services such as carbon sequestration, yet they are vulnerable to the negative impacts brought on by anthropogenic activities. Research in recent decades has shown a progressive loss of blue carbon in mangrove forests as they are converted to aquaculture, agriculture, and urban development. We seek to study the relationship between human population density and soil carbon stocks in urban mangrove forests to quantify their role in the global carbon budget. To this end, we conducted a global analysis, collecting mangrove soil carbon data from previous studies and calculating population density for each study location utilizing a recent database from the European Commission. Results indicate population density has a negative association with mangrove soil carbon stocks. When human population density reaches 300 people km−2, which is defined as ‘urban domains’ in the European Commission database, mangrove soil carbon is estimated to be lower than isolated mangrove forests by 37%. Nonetheless, after accounting for climatic factors in the model, we see the negative relationship between population density and soil carbon is reduced and is even non-significant in mixed effects models. This suggests population density is not a good measure for the direct effects of humans on mangrove ecosystems and further implies mangrove ecosystems in close proximity to very high population density can still possess valuable carbon stocks. Our work provides a better understanding of how soil carbon stocks in existing mangrove forests correlate with different levels of population density, underscores the importance of protecting existing mangroves and especially those in areas with high human population density, and calls for further studies on the association between human activities and mangrove forest carbon stocks.

     
    more » « less
  5. Abstract

    Lianas are prevalent in Neotropical forests, where liana‐tree competition can be intense, resulting in reduced tree growth and survival. The ability of lianas to grow relative to trees during the dry season suggests that liana‐tree competition is also strongest in the dry season. If correct, the predicted intensification of the drying trend over large areas of the tropics in the future may therefore intensify liana‐tree competition resulting in a reduced carbon sink function of tropical forests. However, no study has established whether the liana effect on tree carbon accumulation is indeed stronger in the dry than in the wet season.

    Using 6 years of data from a large‐scale liana removal experiment in Panama, we provide the first experimental test of whether liana effects on tree carbon accumulation differ between seasons. We monitored tree and liana diameter increments at the beginning of the dry and wet season each year to assess seasonal differences in forest‐level carbon accumulation between removal and control plots.

    We found that median liana carbon accumulation was consistently higher in the dry (0.52 Mg C ha−1year−1) than the wet season (0.36 Mg C ha−1year−1) and significantly so in three of the years. Lianas reduced forest‐level median tree carbon accumulation more severely in the wet (1.45 Mg C ha−1year−1) than the dry (1.05 Mg C ha−1year−1) season in all years. However, the relative effect of lianas was similar between the seasons, with lianas reducing forest‐level tree carbon accumulation by 46.9% in the dry and 48.5% in the wet season.

    Synthesis.Our results provide the first experimental demonstration that lianas do not have a stronger competitive effect on tree carbon accumulation during the dry season. Instead, lianas compete significantly with trees during both seasons, indicating a large negative effect of lianas on forest‐level tree biomass increment regardless of seasonal water stress. Longer dry seasons are unlikely to impact liana‐tree competition directly; however, the greater liana biomass increment during dry seasons may lead to further proliferation of liana biomass in tropical forests, with consequences for their ability to store and sequester carbon.

     
    more » « less