skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating the Star Formation Rates of Active Galactic Nucleus Hosts Relative to the Star-forming Main Sequence
Abstract A fundamental question in galaxy and black hole evolution remains how galaxies and their supermassive black holes have evolved together over cosmic time. Specifically, it is still unclear how the position of X-ray active galactic nucleus (AGN) host galaxies with respect to the star-forming main sequence (MS) may change with the X-ray luminosity (LX) of the AGN or the stellar mass (M) of the host galaxy. We use data from the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) to probe this issue. XMM-SERVS is covered by the largest medium-depth X-ray survey (with superb supporting multiwavelength data) and thus contains the largest sample to date for study. To ensure consistency, we locally derive the MS from a large reference galaxy sample. In our analysis, we demonstrate that the turnover of the galaxy MS does not allow reliable conclusions to be drawn for high-mass AGNs, and we establish a robust safe regime where the results do not depend upon the choice of MS definition. Under this framework, our results indicate that less massive AGN host galaxies ( log M 9.5 10.5 M ) generally possess enhanced star formation rates compared to their normal-galaxy counterparts while the more massive AGN host galaxies ( log M 10.5 11.5 M ) lie on or below the star-forming MS. Further, we propose an empirical model for how the placement of an AGN with respect to the MS (SFRnorm) evolves as a function of bothMandLX more » « less
Award ID(s):
2106990
PAR ID:
10491168
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
962
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 156
Size(s):
Article No. 156
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dust-obscured galaxies (DOGs) are enshrouded by dust and many are believed to host accreting supermassive black holes (SMBHs), which makes them unique objects for probing the coevolution of galaxies and SMBHs. We select and characterize DOGs in the 13 deg2XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS), leveraging the superb multiwavelength data—from X-rays to radio. We select 3738 DOGs atz≈ 1.6–2.1 in XMM-SERVS, while maintaining good data quality without introducing significant bias. This represents the largest DOG sample with thorough multiwavelength source characterization. Spectral energy distribution modeling shows DOGs are a heterogeneous population consisting of both normal galaxies and active galactic nuclei (AGNs). Our DOGs are massive ( log M / M 10.7 - 11.3 ), 174 are detected in X-rays, and they are generally radio-quiet systems. X-ray detected DOGs are luminous and are moderately to heavily obscured in X-rays. Stacking analyses for the X-ray undetected DOGs show highly significant average detections. Critically, we compare DOGs with matched galaxy populations. DOGs have similar AGN fractions compared with typical galaxy populations. X-ray detected DOGs have higherMand higher X-ray obscuration, but they are not more star-forming than typical X-ray AGNs. Our results potentially challenge the relevance of the merger-driven galaxy-SMBH coevolution framework for X-ray detected DOGs. 
    more » « less
  2. Abstract Dust-obscured galaxies (DOGs) containing central supermassive black holes (SMBHs) that are rapidly accreting (i.e., having high Eddington ratios,λEdd) may represent a key phase closest to the peak of both the black hole and galaxy growth in the coevolution framework for SMBHs and galaxies. In this work, we present a 68 ks XMM-Newton observation of the high-λEddDOG J1324+4501 atz∼ 0.8, which was initially observed by Chandra. We analyze the XMM-Newton spectra jointly with archival Chandra spectra. In performing a detailed X-ray spectral analysis, we find that the source is intrinsically X-ray luminous with log ( L X /erg s 1 ) = 44.71 0.12 + 0.08 and heavily obscured with log ( N H / cm 2 ) = 23.43 0.13 + 0.09 . We further utilize UV-to-IR archival photometry to measure and fit the source’s spectral energy distribution to estimate its host-galaxy properties. We present a supplementary comparison sample of 21 X-ray luminous DOGs from the XMM-SERVS survey with sufficient (>200) 0.5–10 keV counts to perform a similarly detailed X-ray spectral analysis. Of the X-ray luminous DOGs in our sample, we find that J1324+4501 is the most remarkable, possessing one of the highest X-ray luminosities, column densities, and star formation rates. We demonstrate that J1324+4501 is in an extreme evolutionary stage where SMBH accretion and galaxy growth are at their peaks. 
    more » « less
  3. Abstract We use ALMA observations of CO(2–1) in 13 massive (M*≳ 1011M) poststarburst galaxies atz∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, angu L ar momentum, and Evolution ( SQuIGG L E ) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, with M H 2 10 9 M. Given their high stellar masses, this mass limit corresponds to an average gas fraction of f H 2 M H 2 / M * 7 % or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theDn4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support this empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H2reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, the SQuIGG L E galaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H2scaling relations. 
    more » « less
  4. Abstract We report the discovery of MAGAZ3NE J095924+022537, a spectroscopically confirmed protocluster at z = 3.3665 0.0012 + 0.0009 around a spectroscopically confirmedUVJ-quiescent ultramassive galaxy (UMG; M = 2.34 0.34 + 0.23 × 10 11 M ) in the COSMOS UltraVISTA field. We present a total of 38 protocluster members (14 spectroscopic and 24 photometric), including the UMG. Notably, and in marked contrast to protoclusters previously reported at this epoch that have been found to contain predominantly star-forming members, we measure an elevated fraction of quiescent galaxies relative to the coeval field ( 73.3 16.9 + 26.7 % versus 11.6 4.9 + 7.1 % for galaxies with stellar massM≥ 1011M). This high quenched fraction provides a striking and important counterexample to the seeming ubiquitousness of star-forming galaxies in protoclusters atz> 2 and suggests, rather, that protoclusters exist in a diversity of evolutionary states in the early universe. We discuss the possibility that we might be observing either “early mass quenching” or nonclassical “environmental quenching.” We also present the discovery of MAGAZ3NE J100028+023349, a second spectroscopically confirmed protocluster, at a very similar redshift of z = 3.3801 0.0281 + 0.0213 . We present a total of 20 protocluster members, 12 of which are photometric and eight spectroscopic including a poststarburst UMG ( M = 2.95 0.20 + 0.21 × 10 11 M ). Protoclusters MAGAZ3NE J0959 and MAGAZ3NE J1000 are separated by 18′ on the sky (35 comoving Mpc), in good agreement with predictions from simulations for the size of “Coma”-type cluster progenitors at this epoch. It is highly likely that the two UMGs are the progenitors of Brightest Cluster Galaxies seen in massive virialized clusters at lower redshift. 
    more » « less
  5. Abstract We report statistically significant detection of Hi21 cm emission from intermediate-redshift (z ≈ 0.2–0.6) galaxies. By leveraging multisightline galaxy survey data from the Cosmic Ultraviolet Baryon Survey and deep radio observations from the MeerKAT Absorption Line Survey, we have established a sample of ≈6000 spectroscopically identified galaxies in 11 distinct fields to constrain the neutral gas content at intermediate redshifts. The galaxies sample a broad range in stellar mass, from log M star / M 8 to log M star / M 11 , with a median of log M star / M med 10 and a wide range in redshift fromz ≈ 0.24 toz ≈ 0.63 with a median of 〈z〉med = 0.44. While no individual galaxies show detectable Hiemission, the emission line signal is detected in the stacked spectra of all subsamples at greater than 4σsignificance. The observed total Hi21 cm line flux translates to a Himass,MH I≈1010M. We find a high Hi-to-stellar-mass ratio ofMHI/Mstar ≈ 6 for low-mass galaxies with log M star / M 9.3 (>3.7σ). For galaxies with log M star / M 10.6 , we findMHI/Mstar ≈ 0.3 (>4.7σ). In addition, the redshift evolution of Himass, 〈MH I〉, in both low- and high-mass field galaxies, inferred from the stacked emission-line signal, aligns well with the expectation from the cosmic star formation history. This suggests that the overall decline in the cosmic star formation activity across the general galaxy population may be connected to a decreasing supply of neutral hydrogen. Finally, our analysis has revealed significant 21 cm signals at distances greater than 75 kpc from these intermediate-redshift galaxies, indicating a substantial reservoir of Higas in their extended surroundings. 
    more » « less