We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope at
A fundamental question in galaxy and black hole evolution remains how galaxies and their supermassive black holes have evolved together over cosmic time. Specifically, it is still unclear how the position of X-ray active galactic nucleus (AGN) host galaxies with respect to the star-forming main sequence (MS) may change with the X-ray luminosity (
- Award ID(s):
- 2106990
- NSF-PAR ID:
- 10491168
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 962
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 156
- Size(s):
- Article No. 156
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z = 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy ( keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rate yr−1. From optical spectroscopy and photometry around the [Oii ] emission line, we estimate that the BCG star formation rate is yr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet power erg s−1, which is consistent with the X-ray cooling luminosity ( erg s−1withinr cool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters. -
Abstract This paper presents a newly established sample of 103 unique galaxies or galaxy groups at 0.4 ≲
z ≲ 0.7 from the Cosmic Ultraviolet Baryon Survey (CUBS) for studying the warm-hot circumgalactic medium (CGM) probed by both Ovi and Neviii absorption. The galaxies and associated neighbors are identified at <1 physical Mpc from the sightlines toward 15 CUBS QSOs atz QSO≳ 0.8. A total of 30 galaxies or galaxy groups exhibit associated Ovi λ λ 1031, 1037 doublet absorption within a line-of-sight velocity interval of ±250 km s−1, while the rest show no trace of Ovi to a detection limit of . Meanwhile, only five galaxies or galaxy groups exhibit the Neviii λ λ 770, 780 doublet absorption, down to a limiting column density of . These Ovi - and Neviii -bearing halos reside in different galaxy environments with stellar masses ranging from to ≈11.5. The warm-hot CGM around galaxies of different stellar masses and star formation rates exhibits different spatial profiles and kinematics. In particular, star-forming galaxies with show a significant concentration of metal-enriched warm-hot CGM within the virial radius, while massive quiescent galaxies exhibit flatter radial profiles of both column densities and covering fractions. In addition, the velocity dispersion of Ovi absorption is broad withσ υ > 40 km s−1for galaxies of within the virial radius, suggesting a more dynamic warm-hot halo around these galaxies. Finally, the warm-hot CGM probed by Ovi and Neviii is suggested to be the dominant phase in sub-L * galaxies with based on their high ionization fractions in the CGM. -
Abstract We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using the
Prospector stellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of (68% confidence), including nine photometric redshifts atz ≳ 1. We further find a median mass-weighted age oft m = Gyr, stellar mass of log(M */M ⊙) = , star formation rate of SFR =M ⊙yr−1, stellar metallicity of log(Z */Z ⊙) = , and dust attenuation of mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz ≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel atz > 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website. -
Abstract We investigate the stellar mass–black hole mass (
) relation with type 1 active galactic nuclei (AGNs) down to , corresponding to a ≃ −21 absolute magnitude in rest-frame ultraviolet, atz = 2–2.5. Exploiting the deep and large-area spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs with ranging from 107–1010M ⊙that are measured with single-epoch virial method using Civ emission lines detected in the HETDEX spectra. of the host galaxies are estimated from optical to near-infrared photometric data taken with Spitzer, the Wide-field Infrared Survey Explorer, and ground-based 4–8 m class telescopes byCIGALE spectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by host-nuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the relation covering the unexplored low-mass ranges of , and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic relation atz ∼ 2 has a moderate positive offset of 0.52 ± 0.14 dex from the local relation, suggestive of more efficient black hole growth at higher redshift even in the low-mass regime of . Our relation is inconsistent with the suppression at the low- regime predicted by recent hydrodynamic simulations at a 98% confidence level, suggesting that feedback in the low-mass systems may be weaker than those produced in hydrodynamic simulations. -
Abstract We use ALMA observations of CO(2–1) in 13 massive (
M *≳ 1011M ⊙) poststarburst galaxies atz ∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, angu momentum, and Evolution ( ) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, withM ⊙. Given their high stellar masses, this mass limit corresponds to an average gas fraction of or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theD n 4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support this empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H2reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, the galaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H2scaling relations.