skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Search for brown dwarfs in IC 1396 with Subaru HSC: interpreting the impact of environmental factors on substellar population
ABSTRACT

Young stellar clusters are predominantly the hub of star formation and hence, ideal to perform comprehensive studies over the least explored substellar regime. Various unanswered questions like the mass distribution in brown dwarf regime and the effect of diverse cluster environment on brown dwarf formation efficiency still plague the scientific community. The nearby young cluster, IC 1396 with its feedback-driven environment, is ideal to conduct such study. In this paper, we adopt a multiwavelength approach, using deep Subaru HSC along with other data sets and machine learning techniques to identify the cluster members complete down to ∼ 0.03 M⊙ in the central 22 arcmin area of IC 1396. We identify 458 cluster members including 62 brown dwarfs which are used to determine mass distribution in the region. We obtain a star-to-brown dwarf ratio of ∼ 6 for a stellar mass range 0.03–1 M⊙ in the studied cluster. The brown dwarf fraction is observed to increase across the cluster as radial distance from the central OB-stars increases. This study also compiles 15 young stellar clusters to check the variation of star-to-brown dwarf ratio relative to stellar density and ultraviolet (UV) flux ranging within 4–2500 stars pc−2 and 0.7–7.3 G0, respectively. The brown dwarf fraction is observed to increase with stellar density but the results about the influence of incident UV flux are inconclusive within this range. This is the deepest study of IC 1396 as of yet and it will pave the way to understand various aspects of brown dwarfs using spectroscopic observations in future.

 
more » « less
NSF-PAR ID:
10491244
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
528
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 5633-5648
Size(s):
["p. 5633-5648"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Brown dwarfs can serve as both clocks and chemical tracers of the evolutionary history of the Milky Way due to their continuous cooling and high sensitivity of spectra to composition. We focus on brown dwarfs in globular clusters that host some of the oldest coeval populations in the galaxy. Currently, no brown dwarfs in globular clusters have been confirmed, but they are expected to be uncovered with advanced observational facilities such as the James Webb Space Telescope (JWST). In this paper we present a new set of stellar models specifically designed to investigate low-mass stars and brown dwarfs inωCentauri—the largest known globular cluster. The parameters of our models were derived from iterative fits to Hubble Space Telescope photometry of the main-sequence members of the cluster. Despite the complex distribution of abundances and the presence of multiple main sequences inωCentauri, we find that the modal color–magnitude distribution can be represented by a single stellar population with parameters determined in this study. The observed luminosity function is well represented by two distinct stellar populations having solar and enhanced helium mass fractions and a common initial mass function, in agreement with previous studies. Our analysis confirms that the abundances of individual chemical elements play a key role in determining the physical properties of low-mass cluster members. We use our models to draw predictions of brown dwarf colors and magnitudes in anticipated JWST NIRCam data, confirming that the beginning of the substellar sequence should be detected inωCentauri in forthcoming observations.

     
    more » « less
  2. null (Ed.)
    ABSTRACT We discuss a theoretical model for the early evolution of massive star clusters and confront it with the ALMA, radio, and infrared observations of the young stellar cluster highly obscured by the molecular cloud D1 in the nearby dwarf spheroidal galaxy NGC 5253. We show that a large turbulent pressure in the central zones of D1 cluster may cause individual wind-blown bubbles to reach pressure confinement before encountering their neighbours. In this case, stellar winds energy is added to the hot shocked wind pockets of gas around individual massive stars that leads them to meet and produce a cluster wind in time-scales less than 105 yr. In order to inhibit the possibility of cloud dispersal, or the early negative star formation feedback, one should account for mass loading that may come, for example, from pre-main-sequence (PMS) low-mass stars through photoevaporation of their protostellar discs. Mass loading at a rate in excess of 8 × 10−9 M⊙ yr−1 per each PMS star is required to extend the hidden star cluster phase in this particular cluster. In this regime, the parental cloud remains relatively unperturbed, while pockets of molecular, photoionized and hot gas coexist within the star-forming region. Nevertheless, the most likely scenario for cloud D1 and its embedded cluster is that the hot shocked winds around individual massive stars should merge at an age of a few million of years when the PMS star protostellar discs vanish and mass loading ceases that allows a cluster to form a global wind. 
    more » « less
  3. Abstract Recent work has shown that near-infrared (NIR) Hubble Space Telescope (HST) photometry allows us to disentangle multiple populations (MPs) among M dwarfs of globular clusters (GCs) and to investigate this phenomenon in very-low-mass (VLM) stars. Here, we present the color–magnitude diagrams of nine GCs and the open cluster NGC 6791 in the F110W and F160W bands of HST, showing that the main sequences (MSs) below the knee are either broadened or split, thus providing evidence of MPs among VLM stars. In contrast, the MS of NGC 6791 is consistent with a single population. The color distribution of M dwarfs dramatically changes between different GCs, and the color width correlates with the cluster mass. We conclude that the MP ubiquity, variety, and dependence on GC mass are properties common to VLM and more-massive stars. We combined UV, optical, and NIR observations of NGC 2808 and NGC 6121 (M4) to identify MPs along with a wide range of stellar masses (∼0.2–0.8  ⊙ ), from the MS turnoff to the VLM regime, and measured, for the first time, their mass functions (MFs). We find that the fraction of MPs does not depend on the stellar mass and that their MFs have similar slopes. These findings indicate that the properties of MPs do not depend on stellar mass. In a scenario where the second generations formed in higher-density environments than the first generations, the possibility that the MPs formed with the same initial MF would suggest that it does not depend on the environment. 
    more » « less
  4. ABSTRACT

    We present a statistical and multiwavelength photometric studies of young open cluster IC 1590. We identified 91 cluster members using Gaia DR3 astrometry data using ensemble-based unsupervised machine learning techniques. From Gaia EDR3 data, we estimate the best-fitting parameters for IC 1590 using the Automated Stellar Cluster Analysis package (asteca) yielding the distance d ∼ 2.87 ± 0.02 kpc, age ∼ 3.54 ± 0.05 Myr, metallicity z ∼ 0.0212 ± 0.003, binarity value of ∼ 0.558, and extinction Av ∼ 1.252 ± 0.4 mag for an Rv value of ∼ 3.322 ± 0.23. We estimate the initial mass function slope of the cluster to be α = 1.081 ± 0.112 for single stars and α = 1.490 ± 0.051 for a binary fraction of ∼ 0.558 in the mass range 1 M⊙ ≤ m (M⊙) ≤ 100 M⊙. The G-band luminosity function slope is estimated to be ∼ 0.33 ± 0.09. We use (J − H) versus (H − Ks) colour–colour diagram to identify young stellar objects (YSOs). We found that all the identified YSOs have ages ≤ 2 Myr and masses ∼ 0.35 – 5.5 M⊙. We also fit the radial surface density profile. Using the galpy, we performed orbit analysis of the cluster. The extinction map for the cluster region has been generated using the PNICER technique, and it is almost similar to the dust structure obtained from the 500 μm dust continuum emissions map of Herschel SPIRE. We finally at the end discussed the star formation scenario in the cluster region.

     
    more » « less
  5. We investigate structural properties of massive galaxy populations in the central regions (< 0.7  r 500 ) of five very massive ( M 200  > 4 × 10 14   M ⊙ ), high-redshift (1.4 ≲  z  ≲ 1.7) galaxy clusters from the 2500 deg 2 South Pole Telescope Sunyaev Zel’dovich effect (SPT-SZ) survey. We probe the connection between galaxy structure and broad stellar population properties at stellar masses of log( M / M ⊙ ) > 10.85. We find that quiescent and star-forming cluster galaxy populations are largely dominated by bulge- and disk-dominated sources, respectively, with relative contributions being fully consistent with those of field counterparts. At the same time, the enhanced quiescent galaxy fraction observed in these clusters with respect to the coeval field is reflected in a significant morphology-density relation, with bulge-dominated galaxies already clearly dominating the massive galaxy population in these clusters at z  ∼ 1.5. At face value, these observations show no significant environmental signatures in the correlation between broad structural and stellar population properties. In particular, the Sersic index and axis ratio distribution of massive, quiescent sources are consistent with field counterparts, in spite of the enhanced quiescent galaxy fraction in clusters. This consistency suggests a tight connection between quenching and structural evolution towards a bulge-dominated morphology, at least in the probed cluster regions and galaxy stellar mass range, irrespective of environment-related processes affecting star formation in cluster galaxies. We also probe the stellar mass–size relation of cluster galaxies, and find that star-forming and quiescent sources populate the mass–size plane in a manner largely similar to their field counterparts, with no evidence of a significant size difference for any probed sub-population. In particular, both quiescent and bulge-dominated cluster galaxies have average sizes at fixed stellar mass consistent with their counterparts in the field. 
    more » « less