skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Essential omega‐3 fatty acids are depleted in sea ice and pelagic algae of the Central Arctic Ocean
Abstract Microalgae are the main source of the omega‐3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming‐induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full‐seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice‐covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non‐diatoms. Overall, the algal EPA and DHA proportions varied up to four‐fold seasonally and 10‐fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non‐ice‐associated food web.  more » « less
Award ID(s):
1735862 1824414
PAR ID:
10491254
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Change Biology
Volume:
30
Issue:
1
ISSN:
1354-1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Paul David Cotter, Professor (Ed.)
    Omega-3 fatty acids, including alpha-linolenic acids (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have shown major health benefits, but the human body’s inability to synthesize them has led to the necessity of dietary intake of the products. The omega-3 fatty acid market has grown significantly, with a global market from an estimated USD 2.10 billion in 2020 to a predicted nearly USD 3.61 billion in 2028. However, obtaining a sufficient supply of high-quality and stable omega-3 fatty acids can be challenging. Currently, fish oil serves as the primary source of omega-3 fatty acids in the market, but it has several drawbacks, including high cost, inconsistent product quality, and major uncertainties in its sustainability and ecological impact. Other significant sources of omega-3 fatty acids include plants and microalgae fermentation, but they face similar challenges in reducing manufacturing costs and improving product quality and sustainability. With the advances in synthetic biology, biotechnological production of omega-3 fatty acids via engineered microbial cell factories still offers the best solution to provide a more stable, sustainable, and affordable source of omega-3 fatty acids by overcoming the major issues associated with conventional sources. This review summarizes the current status, key challenges, and future perspectives for the biotechnological production of major omega-3 fatty acids. 
    more » « less
  2. Abstract We use a modern Earth system model to approximate the relative importance of ice versus temperature on Arctic marine ecosystem dynamics. We show that while the model adequately simulates ice volume, water temperature, air‐sea CO2flux, and annual primary production in the Arctic, itunderestimates upper water column nitrate across the region. This nitrate bias is likely responsible for the apparent underestimation of ice algae production. Despite this shortcoming, the model appears to be a useful tool for exploring the impacts of environmental change on phytoplankton production and carbon dynamics over the Arctic Ocean. Our experiments indicate that under a warmer climate scenario, the percentage of ocean warming that could be apportioned to a reduction in ice area ranged from 11% to 100%, while decreasing ice area could account for 22–100% of the increase in annual ocean primary production. The change to CO2air‐sea flux in response to ice and temperature changes averaged an Arctic‐wide 5.5 Tg C yr−1(3.5%) increase, into the ocean. This increased carbon sink may be short‐lived, as ice cover continues to decrease and the ocean warms. The change in carbon fixation from phytoplankton in response to increased temperatures and reduced ice was generally more than a magnitude larger than the changes to CO2flux, highlighting the importance of fully considering changes to the marine ecosystem when assessing Arctic carbon cycle dynamics. Our work demonstrates the importance of ice dynamics in controlling ocean warming and production and thus the need for well‐behaved ice and BGC models within Earth system models if we hope to accurately predict Arctic changes. 
    more » « less
  3. Lauritano, Chiara; Ianora, Adrianna (Ed.)
    Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host–virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host–virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects. 
    more » « less
  4. The epoxidized metabolites of various polyunsaturated fatty acids (PUFAs), termed epoxy fatty acids, have a wide range of roles in human physiology. These metabolites are produced endogenously by the cytochrome P450 class of enzymes. Because of their diverse and potent biological effects, there is considerable interest in studying these metabolites. Determining the unique roles of these metabolites in the body is a difficult task, as the epoxy fatty acids must first be obtained in significant amounts and with high purity. Obtaining compounds from natural sources is often labor intensive, and soluble epoxide hydrolases (sEH) rapidly hydrolyze the metabolites. On the other hand, obtaining these metabolites via chemical reactions is very inefficient, due to the difficulty of obtaining pure regioisomers and enantiomers, low yields, and extensive (and expensive) purification. Here, we present an efficient enzymatic synthesis of 19(S),20(R)- and 16(S),17(R)- epoxydocosapentaenoic acids (EDPs) from DHA via epoxidation with BM3, a bacterial CYP450 enzyme isolated originally from Bacillus megaterium (that is readily expressed in Escherichia coli). Characterization and determination of purity is performed with nuclear magnetic resonance spectroscopy (NMR), high-performance liquid chromatography (HPLC), and mass spectrometry (MS). This procedure illustrates the benefits of enzymatic synthesis of PUFA epoxy metabolites, and is applicable to the epoxidation of other fatty acids, including arachidonic acid (AA) and eicosapentaenoic acid (EPA) to produce the analogous epoxyeicosatrienoic acids (EETs) and epoxyeicosatetraenoic acids (EEQs), respectively. 
    more » « less
  5. Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y−1of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y−1, seagrasses contribute ~23 Tg C y−1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y−1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2y−1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets. 
    more » « less