Summary Arbuscular mycorrhizal fungi (AMF) form beneficial associations with plants, and are thought to have been critical to the adaptation of the ancestor of terrestrial plants during the transition onto land. However, the ability of AMF to associate with aquatic plants is unclear. To address this, we used 65 publicly available genomes and transcriptomes (25 freshwater, 23 terrestrial and 17 marine plants) to interrogate the genomic potential to form AMF associations in aquatic plant lineages in the order Alismatales. We explored the presence or absence of homologs of 45 genes, with a a special focus on six critical genes including three that co-evolved with AMF associations (RAD1, STR1, STR2) and three necessary for intracellular symbiosis (SymRK, CCaMK/DMI3, CYCLOPS/IDP3). Our results indicate a pattern likely consistent with independent gene losses (or extreme divergence) of symbiosis genes across aquatic lineages suggesting a possible inability to form AMF associations. However, some of these conserved genes (i.e.,CCaMK/DMI3) are purported to function in other types of fungal symbioses, such as ectomycorrhizal symbiosis, and were observed here in a subset of aquatic lineages, including seagrasses. Overall, our findings highlight the complex evolutionary trajectories of symbiosis-related genes in aquatic plants, suggesting that while AMF associations may have been lost in certain lineages, others have genes that may allow them to form alternative fungal symbioses which may still play an underappreciated role in their ecology. 
                        more » 
                        « less   
                    
                            
                            IPD3, a master regulator of arbuscular mycorrhizal symbiosis, affects genes for immunity and metabolism of non-host Arabidopsis when restored long after its evolutionary loss
                        
                    
    
            Abstract Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the modelArabidopsis thaliana. To explore if elements of this apparently beneficial trait are still present and could be reactivated we generatedArabidopsisplants expressing a constitutively active form ofInteracting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost fromArabidopsisalong with the AM host trait. We characterize the transcriptomic effect of expressingIPD3inArabidopsiswith and without exposure to the AM fungus (AMF)Rhizophagus irregularis, and compare these results to the AM modelLotus japonicusand itsipd3knockout mutantcyclops-4. Despite its long history as a non-AM species, restoringIPD3in the form of its constitutively active DNA-binding domain toArabidopsisaltered expression of specific gene networks. Surprisingly, the effect of expressingIPD3inArabidopsisand knocking it out inLotuswas strongest in plants not exposed to AMF, which is revealed to be due to changes inIPD3genotype causing a transcriptional state, which partially mimics AMF exposure in non-inoculated plants. Our results indicate that molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1828820
- PAR ID:
- 10491265
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Plant Molecular Biology
- Volume:
- 114
- Issue:
- 2
- ISSN:
- 0167-4412
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Two symbiotic processes, nodulation and arbuscular mycorrhiza, are primarily controlled by the plant’s need for nitrogen (N) and phosphorus (P), respectively. Autoregulation of nodulation (AON) and autoregulation of mycorrhizal symbiosis (AOM) both negatively regulate their respective processes and share multiple components—plants that make too many nodules usually have higher arbuscular mycorrhiza (AM) fungal root colonization. The protein TML (TOO MUCH LOVE) was shown to function in roots to maintain susceptibly to rhizobial infection under low N conditions and control nodule number through AON inLotus japonicus.Medicago truncatulahas two sequence homologs:MtTML1 andMtTML2. We report the generation of stable single and double mutants harboring multiple allelic variations inMtTML1andMtTML2using CRISPR–Cas9 targeted mutagenesis and screening of a transposon mutagenesis library. Plants containing single mutations inMtTML1 orMtTML2 produced two to three times the nodules of wild-type plants, whereas plants containing mutations in both genes displayed a synergistic effect, forming 20× more nodules compared to wild-type plants. Examination of expression and heterozygote effects suggests that genetic compensation may play a role in the observed synergy. Plants with mutations in bothTMLs only showed mild increases in AM fungal root colonization at later timepoints in our experiments, suggesting that these genes may also play a minor role in AM symbiosis regulation. The mutants created will be useful tools to dissect the mechanism of synergistic action ofMtTML1 andMtTML2 inM. truncatulasymbiosis with beneficial microbes.more » « less
- 
            The plant cell wall (CW) is an outer cell skeleton that plays an important role in plant growth and protection against both biotic and abiotic stresses. Signals and molecules produced during host–pathogen interactions have been proven to be involved in plant stress responses initiating signal pathways. Based on our previous research findings, the present study explored the possibility of additively or synergistically increasing plant stress resistance by stacking beneficial genes. In order to prove our hypothesis, we generated transgenic Arabidopsis plants constitutively overexpressing three different Aspergillus nidulans CW-modifying enzymes: a xylan acetylesterase, a rhamnogalacturonan acetylesterase and a feruloylesterase. The two acetylesterases were expressed either together or in combination with the feruloylesterase to study the effect of CW polysaccharide deacetylation and deferuloylation on Arabidopsis defense reactions against a fungal pathogen, Botrytis cinerea. The transgenic Arabidopsis plants expressing two acetylesterases together showed higher CW deacetylation and increased resistance to B. cinerea in comparison to wild-type (WT) Col-0 and plants expressing single acetylesterases. While the expression of feruloylesterase alone compromised plant resistance, coexpression of feruloylesterase together with either one of the two acetylesterases restored plant resistance to the pathogen. These CW modifications induced several defense-related genes in uninfected healthy plants, confirming their impact on plant resistance. These results demonstrated that coexpression of complementary CW-modifying enzymes in different combinations have an additive effect on plant stress response by constitutively priming the plant defense pathways. These findings might be useful for generating valuable crops with higher protections against biotic stresses.more » « less
- 
            Abstract Arbuscular mycorrhizal fungi (AMF) are widespread obligate symbionts of plants. This dynamic symbiosis plays a large role in successful plant performance, given that AMF help to ameliorate plant responses to abiotic and biotic stressors. Although the importance of this symbiosis is clear, less is known about what may be driving this symbiosis, the plant's need for nutrients or the excess of plant photosynthate being transferred to the AMF, information critical to assess the functionality of this relationship. Characterizing the AMF community along a natural plant productivity gradient is a first step in understanding how this symbiosis may vary across the landscape. We surveyed the AMF community diversity at 12 sites along a plant productivity gradient driven by soil nitrogen availability. We found that AMF diversity in soil environmental DNA significantly increased along with the growth of the host plantsAcerrubrumandA. saccharum., a widespread tree genus. These increases also coincided with a natural soil inorganic N availability gradient. We hypothesize photosynthate from the increased tree growth is being allocated to the belowground AMF community, leading to an increase in diversity. These findings contribute to understanding this complex symbiosis through the lens of AMF turnover and suggest that a more diverse AMF community is associated with increased host–plant performance.more » « less
- 
            Abstract Research in Arabidopsis thaliana has a powerful influence on our understanding of gene functions and pathways. However, not everything translates from Arabidopsis to crops and other plants. Here, a group of experts consider instances where translation has been lost and why such translation is not possible or is challenging. First, despite great efforts, floral dip transformation has not succeeded in other species outside Brassicaceae. Second, due to gene duplications and losses throughout evolution, it can be complex to establish which genes are orthologs of Arabidopsis genes. Third, during evolution Arabidopsis has lost arbuscular mycorrhizal symbiosis. Fourth, other plants have evolved specialized cell types that are not present in Arabidopsis. Fifth, similarly, C4 photosynthesis cannot be studied in Arabidopsis, which is a C3 plant. Sixth, many other plant species have larger genomes, which has given rise to innovations in transcriptional regulation that are not present in Arabidopsis. Seventh, phenotypes such as acclimation to water stress can be challenging to translate due to different measurement strategies. And eighth, while the circadian oscillator is conserved, there are important nuances in the roles of circadian regulators in crop plants. A key theme emerging across these vignettes is that even when translation is lost, insights can still be gained through comparison with Arabidopsis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
