Abstract Risk-informed decisions that promote infrastructure resilience (or the ability to withstand, recover from, and adapt to stressors like natural hazards) require confident predictions of system performance now and into the future. We propose a perspective shift–one capable of handling uncertain and dynamic conditions, leveraging emerging observations from smart systems, and guided by demands for social equity. This shift requires collective efforts, but our future cities demand and deserve it.
more »
« less
Smart resilience: Capturing dynamic, uncertain and evolving lifecycle conditions
Modern cities are becoming increasingly smart and interconnected, with the capacity to gather unprecedented amounts of information. However, available methods for resilience quantification lack agility to cope with the ever-changing conditions and data that underpin disaster resilience and lifecycle performance analysis. In this paper, we discuss the limitations in the models themselves, i.e. even though frameworks predict uncertain and temporally evolving system performance, they are unable to learn from new data. To address these limitations, we pose a ‘smart resilience modeling concept’ which presents the ability to update model estimations and to efficiently estimate the lifecycle resilience as new data emerges. Hypothetical examples on community infrastructure affected by deterioration effects and punctuated events are presented. This conceptualization is expected to lay a foundation for smart resilience models capable of capturing the dynamic, uncertain, and evolving characteristics of future environmental demands, societal characteristics, and infrastructure conditions.
more »
« less
- Award ID(s):
- 2227467
- PAR ID:
- 10491312
- Editor(s):
- Fabio Biondini, Dan M.
- Publisher / Repository:
- Taylor & Francis Group
- Date Published:
- Journal Name:
- PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON LIFE-CYCLE CIVIL ENGINEERING (IALCCE 2023)
- Edition / Version:
- 1st
- ISBN:
- 9781003323020
- Page Range / eLocation ID:
- 341 - 348
- Format(s):
- Medium: X
- Location:
- London
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The potential of smart cities in remediating environmental problems in general and waste management, in particular, is an important question that needs to be investigated in academic research. Built on an integrative review of the literature, this study offers insights into the potential of smart cities and connected communities in facilitating waste management efforts. Shortcomings of existing waste management practices are highlighted and a conceptual framework for a centralized waste management system is proposed, where three interconnected elements are discussed: (1) an infrastructure for proper collection of product lifecycle data to facilitate full visibility throughout the entire lifespan of a product, (2) a set of new business models relied on product lifecycle data to prevent waste generation, and (3) an intelligent sensor-based infrastructure for proper upstream waste separation and on-time collection. The proposed framework highlights the value of product lifecycle data in reducing waste and enhancing waste recovery and the need for connecting waste management practices to the whole product lifecycle. An example of the use of tracking and data sharing technologies for investigating the waste management issues has been discussed. Finally, the success factors for implementing the proposed framework and some thoughts on future research directions have been discussed.more » « less
-
null (Ed.)Urban water system managers face a set of interrelated water security challenges as they pursue the goals of sustainable sources of water, mitigating flood hazards, and improving water quality. These challenges are often subject to change (and hence highly uncertain) due to the coupled effects of hydro-climatic variability, socio-economic trends, and regulatory reforms. To meet these intersecting goals, we present a mechanistic framework with illustrative examples that evaluates an urban water system’s resilience under future uncertainty. By employing principles from engineering design, ecosystem science, and social equity studies, our resilient urban water systems (ReUWS) framework explores the potential of effectively combining green and gray infrastructure (GGI) in an urban watershed while prioritizing stakeholder and community engagement throughout the lifecycle of water system projects. A nested set of hydrology, ecosystem, and hydraulic models are developed with data flow among them defining the boundary and initial conditions for each other. An example is shown with the Baltimore water system on an approach to evaluate the effects of GGI hybrids on major water security metrics. The corresponding engineering designs, ecosystem service potentials, and measures of equitable access to services are also analyzed using the framework. The results evaluate performance of the existing systems under future conditions and also compare different GGI-based strategies for improving resilience in urban water systems. The findings of the study help to evaluate the potential for using GGI strategies to cope with changing climate extremes and other environmental factors as well as social change. Trade-offs derived from the case studies also can be used to adjust local/regional policies and regulations.more » « less
-
We describe a framework for deploying agent-based models as a tool for decision-making during resilience planning, with an emphasis on flood mitigation. Prior work has demonstrated that agent-based models can be effective tools for modelling evolving community flood resilience and risk perception when they incorporate elements of individual decision-making. We argue for extending this methodology and incorporating it into regional infrastructure and resilience planning in order to 1) create more distributed and robust green infrastructure implementations and performance management systems; 2) provide a critique and alternatives to existing planning and delivery processes based on public sector jurisdictional boundaries; and, 3) validate and improve the modelling process by connecting it directly to stakeholder decision-making processes. This final point will effectively merge these systems-centric modelling approaches with human-centred community organising that employs various co-design methods. In regard to the ABMs, co-design methods can be a useful source of real-world data about individual decision-making that can inform and validate iterations of the models. For stakeholders, they can be a valuable source of information and education about flood risk and climate-related impacts that might not be available through other channels. And finally, hands-on workshops coupled with potential small implementation grants can be effective ways of providing skills and incentives to stakeholders who may wish to undertake projects on their own property, reshaping the way green infrastructure planning and implementation can be accomplished.more » « less
-
null (Ed.)Infrastructure is essential to provision of public health, safety, and well-being. Yet, even critical infrastructure systems cannot be designed, constructed, and operated to be robust to the myriad of surprising hazards they are likely to be subject to. As such, there has been increasing emphasis in Federal policy on enhancing infrastructure resilience. Nonetheless, existing research on infrastructure systems often overlooks the role of individual decision-making and team dynamics under the conditions of high ambiguity and uncertainty typically associated with surprise. Although evidence suggests that human factors correlating with resilience and adaptive capacity emerge in later stages of psychological development, there is an acute need for new knowledge about the human capacity to comprehend increasing levels of complexity in the context of rapidly evolving technological, ecological, and social stress conditions. Sometimes, it is this developmental capacity for meaning-making that is the difference between adaptive and maladaptive response. Thus, without a better understanding of the human capacity to develop and assign meaning to complex systems, unquestioned misconceptions about the human role may prevail. In this work, we examine the dynamic relationships between human and technological systems from a developmental perspective. We argue that knowledge of resilient human development can improve system resilience by aligning roles and responsibilities with the developmental capacities of individuals and groups responsible for the design, operation, and management of critical infrastructures. Taking a holistic approach that draws on both psychology and resilience engineering literature facilitates construction of an integrated model that lends itself to empirical verification of future research.more » « less
An official website of the United States government

