Active learning strategies aim to increase student critical thinking and engagement. In this article I describe my biochemistry classroom switch from lecture-only to half lecture and half in-class activities, inspired by Process Oriented Guided Inquiry Learning (POGIL). Students in a first semester biochemistry course maintained the same ACS exam scores at the end of the course, continued to rate the course and its instruction highly, and class attendance significantly increased after the change in pedagogy. This format was also implemented in a second semester biochemistry course during a course redesign. The flexibility of in-class activities allowed an iterative addition of a bioinformatics themed course-based undergraduate research experience (CURE). The Biochemistry II students report learning practical skills that are likely to benefit them in the future.
more »
« less
Teaching Protein–Ligand Interactions Using a Case Study on Tau in Alzheimer’s Disease
ABSTRACT: Case studies are helpful teaching tools that can bring scientific concepts to life. Here, we present a case study related to protein−ligand interactions, amino acids, protein structure, and protein modification. While protein−ligand interaction is a foundational concept within Biochemistry, there are few available case studies that focus on this topic. This case study guides students through the scientific thought process and experimental order that could be used to answer questions regarding the role of tau in the etiology of Alzheimer’s disease, based on realistic interactions of tau and microtubules. This case study was trialed in multiple contexts: in a single class period in a one-semester Biochemistry class for nonmajors and as an at-home assignment in a two semester Biochemistry sequence for Biochemistry majors. A survey of student responses indicate that this case study was helpful in improving student creative problem solving and student understanding of real-world applications related to protein−ligand interactions.
more »
« less
- Award ID(s):
- 1817966
- PAR ID:
- 10491316
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of Chemical Education
- Volume:
- 99
- Issue:
- 8
- ISSN:
- 0021-9584
- Page Range / eLocation ID:
- 3064 to 3067
- Subject(s) / Keyword(s):
- Upper-Division Undergraduate, Biochemistry, Amino Acids, Nonmajor Courses, Proteins/Peptides, Molecular Recognition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Responding to the need to teach remotely due to COVID-19, we used readily available computational approaches (and developed associated tutorials (https://mdh-cures-community.squarespace.com/virtual-cures-and-ures)) to teach virtual Course-Based Undergraduate Research Experience (CURE) laboratories that fulfil generally accepted main components of CUREs or Undergraduate Research Experiences (UREs): Scientific Background, Hypothesis Development, Proposal, Experiments, Teamwork, Data Analysis, Conclusions, and Presentation1. We then developed and taught remotely, in three phases, protein-centric CURE activities that are adaptable to virtually any protein, emphasizing contributions of noncovalent interactions to structure, binding and catalysis (an ASBMB learning framework2 foundational concept). The courses had five learning goals (unchanged in the virtual format),focused on i) use of primary literature and bioinformatics, ii) the roles of non-covalent interactions, iii) keeping accurate laboratory notebooks, iv) hypothesis development and research proposal writing, and, v) presenting the project and drawing evidence based conclusions The first phase, Developing a Research Proposal, contains three modules, and develops hallmarks of a good student-developed hypothesis using available literature (PubMed3) and preliminary observations obtained using bioinformatics, Module 1: Using Primary Literature and Data Bases (Protein Data Base4, Blast5 and Clustal Omega6), Module 2: Molecular Visualization (PyMol7 and Chimera8), culminating in a research proposal (Module 3). Provided rubrics guide student expectations. In the second phase, Preparing the Proteins, students prepared necessary proteins and mutants using Module 4: Creating and Validating Models, which leads users through creating mutants with PyMol, homology modeling with Phyre29 or Missense10, energy minimization using RefineD11 or ModRefiner12, and structure validation using MolProbity13. In the third phase, Computational Experimental Approaches to Explore the Questions developed from the Hypothesis, students selected appropriate tools to perform their experiments, chosen from computational techniques suitable for a CURE laboratory class taught remotely. Questions, paired with computational approaches were selected from Modules 5: Exploring Titratable Groups in a Protein using H++14, 6: Exploring Small Molecule Ligand Binding (with SwissDock15), 7: Exploring Protein-Protein Interaction (with HawkDock16), 8: Detecting and Exploring Potential Binding Sites on a Protein (with POCASA17 and SwissDock), and 9: Structure-Activity Relationships of Ligand Binding & Drug Design (with SwissDock, Open Eye18 or the Molecular Operating Environment (MOE)19). All involve freely available computational approaches on publicly accessible web-based servers around the world (with the exception of MOE). Original literature/Journal club activities on approaches helped students suggest tie-ins to wet lab experiments they could conduct in the future to complement their computational approaches. This approach allowed us to continue using high impact CURE teaching, without changing our course learning goals. Quantitative data (including replicates) was collected and analyzed during regular class periods. Students developed evidence-based conclusions and related them to their research questions and hypotheses. Projects culminated in a presentation where faculty feedback was facilitated with the Virtual Presentation platform from QUBES20 These computational approaches are readily adaptable for topics accessible for first to senior year classes and individual research projects (UREs). We used them in both partial and full semester CUREs in various institutional settings. We believe this format can benefit faculty and students from a wide variety of teaching institutions under conditions where remote teaching is necessary.more » « less
-
Background: Tau assembly produces soluble oligomers and insoluble neurofibrillary tangles, which are neurotoxic to the brain and associated with Alzheimer’s and Parkinson’s diseases. Therefore, preventing tau aggregation is a promising therapy for those neurodegenerative disorders. Objective: The aim of this study was to develop a joint computational/cell-based oligomerization protocol for screening inhibitors of tau assembly. Methods: Virtual oligomerization inhibition (VOI) experiment using molecular dynamics simulation was performed to screen potential oligomerization inhibitors of PHF6 hexapeptide. Tau seeding assay, which is directly related to the outcome of therapeutic intervention, was carried out to confirm a ligand’s ability in inhibiting tau assembly formation. Results: Our protocol was tested on two known compounds, EGCG and Blarcamesine. EGCG inhibited both the aggregation of PHF6 peptide in VOI and tau assembly in tau seeding assay, while Blarcamesine was not a good inhibitor at the two tasks. We also pointed out that good binding affinity to tau aggregates is needed, but not sufficient for a ligand to become a good inhibitor of tau oligomerization. Conclusion: VOI goes beyond traditional computational inhibitor screening of amyloid aggregation by directly examining the inhibitory ability of a ligand to tau oligomerization. Comparing with the traditional biochemical assays, tau seeding activities in cells is a better indicator for the outcome of a therapeutic intervention. Our hybrid protocol has been successfully validated. It can effectively and efficiently identify the inhibitors of amyloid oligomerization/aggregation processes, thus, facilitate to the drug development of tau-related neurodegenerative diseases.more » « less
-
Over the past two decades, many studies have analyzed the extensive benefits of makerspaces towards student education, design-self efficacy, and community involvement. However, less work has been dedicated to examining the ways in which students interact within makerspaces. This study seeks to dive deeper into the patterns of tools that students are using and how this knowledge can inform makerspaces and make them more effective. Tool usage data was collected through end of semester surveys administered to students at two large public universities over the course of 5 semesters: Fall 2020, Spring 2021, Spring 2022, Fall 2022, and Spring 2023. The survey asked a variety of questions about prior makerspace experience, general and specific tool usage, and student demographics. The first three semesters of data were used to gain an understanding of how different student groups – defined based on categories such as major, demographic, or class taken – interact with various tools within the space. Combined semester analysis was used to understand how underrepresented minorities were utilizing the space while between semester analysis was used to see trends in makerspace usage over time. The onset of the COVID-19 pandemic at the start of the study provided ample opportunity to examine the effects of unprecedented disruptive events and the resulting restrictions on the health of makerspaces and student interactions. Results showed substantial differences in usage between schools and student groups as well as a decline in usage following the onset of COVID restrictions. In the final two semesters, a pilot study was conducted at both makerspaces to determine how hands-on, and tour-based workshops offered to students can be used to increase tool usage in makerspaces and more successfully welcome new students into the maker world. While there is insufficient data to make any conclusions from these interventions, they showed the potential for promising results if future work is performed. Finally, insights from this study are used to offer suggestions to makerspace administrators on how to address poor makerspace usage.more » « less
-
ABSTRACT Biophysics is an interdisciplinary pursuit requiring researchers with knowledge and skills in several areas. Optical instruments and computers are fundamental tools in biophysics research to collect and analyze data. We developed a 1-semester Optical Engineering Laboratory course to teach image processing, optical engineering, and research skills to undergraduate students majoring in biology and biochemistry. With the use of development systems on students' laptops and in the cloud, students learned image processing with Python and OpenCV. Each student constructed a microprocessor-based lensless holographic microscope, gaining hands-on experience with optical engineering. The class culminated in original, student-designed research projects. All lectures, hands-on labs, and student research projects were performed both in person and remotely, in response to the COVID-19 pandemic.more » « less
An official website of the United States government

