Abstract Occipital cortices of different sighted people contain analogous maps of visual information (e.g. foveal vs. peripheral). In congenital blindness, “visual” cortices respond to nonvisual stimuli. Do visual cortices of different blind people represent common informational maps? We leverage naturalistic stimuli and inter-subject pattern similarity analysis to address this question. Blindfolded sighted (n = 22) and congenitally blind (n = 22) participants listened to 6 sound clips (5–7 min each): 3 auditory excerpts from movies; a naturalistic spoken narrative; and matched degraded auditory stimuli (Backwards Speech, scrambled sentences), during functional magnetic resonance imaging scanning. We compared the spatial activity patterns evoked by each unique 10-s segment of the different auditory excerpts across blind and sighted people. Segments of meaningful naturalistic stimuli produced distinctive activity patterns in frontotemporal networks that were shared across blind and across sighted individuals. In the blind group only, segment-specific, cross-subject patterns emerged in visual cortex, but only for meaningful naturalistic stimuli and not Backwards Speech. Spatial patterns of activity within visual cortices are sensitive to time-varying information in meaningful naturalistic auditory stimuli in a broadly similar manner across blind individuals.
more »
« less
Cross-movie prediction of individualized functional topography
Participant-specific, functionally defined brain areas are usually mapped with functional localizers and estimated by making contrasts between responses to single categories of input. Naturalistic stimuli engage multiple brain systems in parallel, provide more ecologically plausible estimates of real-world statistics, and are friendly to special populations. The current study shows that cortical functional topographies in individual participants can be estimated with high fidelity from naturalistic stimuli. Importantly, we demonstrate that robust, individualized estimates can be obtained even when participants watched different movies, were scanned with different parameters/scanners, and were sampled from different institutes across the world. Our results create a foundation for future studies that allow researchers to estimate a broad range of functional topographies based on naturalistic movies and a normative database, making it possible to integrate high-level cognitive functions across datasets from laboratories worldwide.
more »
« less
- Award ID(s):
- 1835200
- PAR ID:
- 10491334
- Publisher / Repository:
- eLife
- Date Published:
- Journal Name:
- eLife
- Volume:
- 12
- ISSN:
- 2050-084X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Everything that the brain sees must first be encoded by the retina, which maintains a reliable representation of the visual world in many different, complex natural scenes while also adapting to stimulus changes. This study quantifies whether and how the brain selectively encodes stimulus features about scene identity in complex naturalistic environments. While a wealth of previous work has dug into the static and dynamic features of the population code in retinal ganglion cells, less is known about how populations form both flexible and reliable encoding in natural moving scenes. We record from the larval salamander retina responding to five different natural movies, over many repeats, and use these data to characterize the population code in terms of single-cell fluctuations in rate and pairwise couplings between cells. Decomposing the population code into independent and cell-cell interactions reveals how broad scene structure is encoded in the retinal output. while the single-cell activity adapts to different stimuli, the population structure captured in the sparse, strong couplings is consistent across natural movies as well as synthetic stimuli. We show that these interactions contribute to encoding scene identity. We also demonstrate that this structure likely arises in part from shared bipolar cell input as well as from gap junctions between retinal ganglion cells and amacrine cells.more » « less
-
Deep convolutional neural networks (DCNNs) trained for face identification can rival and even exceed human-level performance. The ways in which the internal face representations in DCNNs relate to human cognitive representations and brain activity are not well understood. Nearly all previous studies focused on static face image processing with rapid display times and ignored the processing of naturalistic, dynamic information. To address this gap, we developed the largest naturalistic dynamic face stimulus set in human neuroimaging research (700+ naturalistic video clips of unfamiliar faces). We used this naturalistic dataset to compare representational geometries estimated from DCNNs, behavioral responses, and brain responses. We found that DCNN representational geometries were consistent across architectures, cognitive representational geometries were consistent across raters in a behavioral arrangement task, and neural representational geometries in face areas were consistent across brains. Representational geometries in late, fully connected DCNN layers, which are optimized for individuation, were much more weakly correlated with cognitive and neural geometries than were geometries in late-intermediate layers. The late-intermediate face-DCNN layers successfully matched cognitive representational geometries, as measured with a behavioral arrangement task that primarily reflected categorical attributes, and correlated with neural representational geometries in known face-selective topographies. Our study suggests that current DCNNs successfully capture neural cognitive processes for categorical attributes of faces but less accurately capture individuation and dynamic features.more » « less
-
null (Ed.)Abstract Naturalistic stimuli evoke strong, consistent, and information-rich patterns of brain activity, and engage large extents of the human brain. They allow researchers to compare highly similar brain responses across subjects, and to study how complex representations are encoded in brain activity. Here, we describe and share a dataset where 25 subjects watched part of the feature film “The Grand Budapest Hotel” by Wes Anderson. The movie has a large cast with many famous actors. Throughout the story, the camera shots highlight faces and expressions, which are fundamental to understand the complex narrative of the movie. This movie was chosen to sample brain activity specifically related to social interactions and face processing. This dataset provides researchers with fMRI data that can be used to explore social cognitive processes and face processing, adding to the existing neuroimaging datasets that sample brain activity with naturalistic movies.more » « less
-
null (Ed.)Abstract The bulk of social neuroscience takes a ‘stimulus-brain’ approach, typically comparing brain responses to different types of social stimuli, but most of the time in the absence of direct social interaction. Over the last two decades, a growing number of researchers have adopted a ‘brain-to-brain’ approach, exploring similarities between brain patterns across participants as a novel way to gain insight into the social brain. This methodological shift has facilitated the introduction of naturalistic social stimuli into the study design (e.g. movies) and, crucially, has spurred the development of new tools to directly study social interaction, both in controlled experimental settings and in more ecologically valid environments. Specifically, ‘hyperscanning’ setups, which allow the simultaneous recording of brain activity from two or more individuals during social tasks, has gained popularity in recent years. However, currently, there is no agreed-upon approach to carry out such ‘inter-brain connectivity analysis’, resulting in a scattered landscape of analysis techniques. To accommodate a growing demand to standardize analysis approaches in this fast-growing research field, we have developed Hyperscanning Python Pipeline, a comprehensive and easy open-source software package that allows (social) neuroscientists to carry-out and to interpret inter-brain connectivity analyses.more » « less
An official website of the United States government

