skip to main content


Title: A long-read and short-read transcriptomics approach provides the first high-quality reference transcriptome and genome annotation for Pseudotsuga menziesii (Douglas-fir)
Abstract

Douglas-fir (Pseudotsuga menziesii) is native to western North America. It grows in a wide range of environmental conditions and is an important timber tree. Although there are several studies on the gene expression responses of Douglas-fir to abiotic cues, the absence of high-quality transcriptome and genome data is a barrier to further investigation. Like for most conifers, the available transcriptome and genome reference dataset for Douglas-fir remains fragmented and requires refinement. We aimed to generate a highly accurate, and complete reference transcriptome and genome annotation. We deep-sequenced the transcriptome of Douglas-fir needles from seedlings that were grown under nonstress control conditions or a combination of heat and drought stress conditions using long-read (LR) and short-read (SR) sequencing platforms. We used 2 computational approaches, namely de novo and genome-guided LR transcriptome assembly. Using the LR de novo assembly, we identified 1.3X more high-quality transcripts, 1.85X more “complete” genes, and 2.7X more functionally annotated genes compared to the genome-guided assembly approach. We predicted 666 long noncoding RNAs and 12,778 unique protein-coding transcripts including 2,016 putative transcription factors. We leveraged the LR de novo assembled transcriptome with paired-end SR and a published single-end SR transcriptome to generate an improved genome annotation. This was conducted with BRAKER2 and refined based on functional annotation, repetitive content, and transcriptome alignment. This high-quality genome annotation has 51,419 unique gene models derived from 322,631 initial predictions. Overall, our informatics approach provides a new reference Douglas-fir transcriptome assembly and genome annotation with considerably improved completeness and functional annotation.

 
more » « less
Award ID(s):
1943371
NSF-PAR ID:
10491506
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Holland, J.
Publisher / Repository:
Oxford
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
13
Issue:
2
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Premise

    Robust standards to evaluate quality and completeness are lacking in eukaryotic structural genome annotation, as genome annotation software is developed using model organisms and typically lacks benchmarking to comprehensively evaluate the quality and accuracy of the final predictions. The annotation of plant genomes is particularly challenging due to their large sizes, abundant transposable elements, and variable ploidies. This study investigates the impact of genome quality, complexity, sequence read input, and method on protein‐coding gene predictions.

    Methods

    The impact of repeat masking, long‐read and short‐read inputs, and de novo and genome‐guided protein evidence was examined in the context of the popular BRAKER and MAKER workflows for five plant genomes. The annotations were benchmarked for structural traits and sequence similarity.

    Results

    Benchmarks that reflect gene structures, reciprocal similarity search alignments, and mono‐exonic/multi‐exonic gene counts provide a more complete view of annotation accuracy. Transcripts derived from RNA‐read alignments alone are not sufficient for genome annotation. Gene prediction workflows that combine evidence‐based and ab initio approaches are recommended, and a combination of short and long reads can improve genome annotation. Adding protein evidence from de novo assemblies, genome‐guided transcriptome assemblies, or full‐length proteins from OrthoDB generates more putative false positives as implemented in the current workflows. Post‐processing with functional and structural filters is highly recommended.

    Discussion

    While the annotation of non‐model plant genomes remains complex, this study provides recommendations for inputs and methodological approaches. We discuss a set of best practices to generate an optimal plant genome annotation and present a more robust set of metrics to evaluate the resulting predictions.

     
    more » « less
  2. Abstract Background

    Systems-level analyses, such as differential gene expression analysis, co-expression analysis, and metabolic pathway reconstruction, depend on the accuracy of the transcriptome. Multiple tools exist to perform transcriptome assembly from RNAseq data. However, assembling high quality transcriptomes is still not a trivial problem. This is especially the case for non-model organisms where adequate reference genomes are often not available. Different methods produce different transcriptome models and there is no easy way to determine which are more accurate. Furthermore, having alternative-splicing events exacerbates such difficult assembly problems. While benchmarking transcriptome assemblies is critical, this is also not trivial due to the general lack of true reference transcriptomes.

    Results

    In this study, we first provide a pipeline to generate a set of the simulated benchmark transcriptome and corresponding RNAseq data. Using the simulated benchmarking datasets, we compared the performance of various transcriptome assembly approaches including both de novo and genome-guided methods. The results showed that the assembly performance deteriorates significantly when alternative transcripts (isoforms) exist or for genome-guided methods when the reference is not available from the same genome. To improve the transcriptome assembly performance, leveraging the overlapping predictions between different assemblies, we present a new consensus-based ensemble transcriptome assembly approach, ConSemble.

    Conclusions

    Without using a reference genome, ConSemble using four de novo assemblers achieved an accuracy up to twice as high as any de novo assemblers we compared. When a reference genome is available, ConSemble using four genome-guided assemblies removed many incorrectly assembled contigs with minimal impact on correctly assembled contigs, achieving higher precision and accuracy than individual genome-guided methods. Furthermore, ConSemble using de novo assemblers matched or exceeded the best performing genome-guided assemblers even when the transcriptomes included isoforms. We thus demonstrated that the ConSemble consensus strategy both for de novo and genome-guided assemblers can improve transcriptome assembly. The RNAseq simulation pipeline, the benchmark transcriptome datasets, and the script to perform the ConSemble assembly are all freely available from:http://bioinfolab.unl.edu/emlab/consemble/.

     
    more » « less
  3. Abstract

    Certain cultivars of maize show increased tolerance to water deficit conditions by maintenance of root growth. To better understand the molecular mechanisms related to this adaptation, nodal root growth zone samples were collected from the reference inbred line B73 and inbred line FR697, which exhibits a relatively greater ability to maintain root elongation under water deficits. Plants were grown under various water stress levels in both field and controlled environment settings. FR697-specific RNA-Seq datasets were generated and used for a de novo transcriptome assembly to characterize any genotype-specific genetic features. The assembly was aided by an Iso-Seq library of transcripts generated from various FR697 plant tissue samples. The Necklace pipeline was used to combine a Trinity de novo assembly along with a reference guided assembly and the Viridiplantae proteome to generate an annotated consensus “SuperTranscriptome” assembly of 47,915 transcripts with a N50 of 3152 bp in length. The results were compared by Blastn to maize reference genes, a Benchmarking Universal Single-Copy Orthologs (BUSCO) genome completeness report and compared with three maize reference genomes. The resultant ‘SuperTranscriptome’ was demonstrated to be of high-quality and will serve as an important reference for analysis of the maize nodal root transcriptomic response to environmental perturbations.

     
    more » « less
  4. Abstract

    Long-read sequencing is revolutionizingde-novogenome assemblies, with continued advancements making it more readily available for previously understudied, non-model organisms. Stony corals are one such example, with long-readde-novogenome assemblies now starting to be publicly available, opening the door for a wide array of ‘omics-based research. Here we present a newde-novogenome assembly for the endangered Caribbean star coral,Orbicella faveolata, using PacBio circular consensus reads. Our genome assembly improved the contiguity (51 versus 1,933 contigs) and complete and single copy BUSCO orthologs (93.6% versus 85.3%, database metazoa_odb10), compared to the currently available reference genome generated using short-read methodologies. Our newde-novoassembled genome also showed comparable quality metrics to other coral long-read genomes. Telomeric repeat analysis identified putative chromosomes in our scaffolded assembly, with these repeats at either one, or both ends, of scaffolded contigs. We identified 32,172 protein coding genes in our assembly through use of long-read RNA sequencing (ISO-seq) of additionalO. faveolatafragments exposed to a range of abiotic and biotic treatments, and publicly available short-read RNA-seq data. With anthropogenic influences heavily affectingO. faveolata, as well as itsincreasing incorporation into reef restoration activities, this updated genome resource can be used for population genomics and other ‘omics analyses to aid in the conservation of this species.

     
    more » « less
  5. Abstract Background

    The eukaryotic genome is capable of producing multiple isoforms from a gene by alternative polyadenylation (APA) during pre-mRNA processing. APA in the 3′-untranslated region (3′-UTR) of mRNA produces transcripts with shorter or longer 3′-UTR. Often, 3′-UTR serves as a binding platform for microRNAs and RNA-binding proteins, which affect the fate of the mRNA transcript. Thus, 3′-UTR APA is known to modulate translation and provides a mean to regulate gene expression at the post-transcriptional level. Current bioinformatics pipelines have limited capability in profiling 3′-UTR APA events due to incomplete annotations and a low-resolution analyzing power: widely available bioinformatics pipelines do not reference actionable polyadenylation (cleavage) sites but simulate 3′-UTR APA only using RNA-seq read coverage, causing false positive identifications. To overcome these limitations, we developed APA-Scan, a robust program that identifies 3′-UTR APA events and visualizes the RNA-seq short-read coverage with gene annotations.

    Methods

    APA-Scan utilizes either predicted or experimentally validated actionable polyadenylation signals as a reference for polyadenylation sites and calculates the quantity of long and short 3′-UTR transcripts in the RNA-seq data. APA-Scan works in three major steps: (i) calculate the read coverage of the 3′-UTR regions of genes; (ii) identify the potential APA sites and evaluate the significance of the events among two biological conditions; (iii) graphical representation of user specific event with 3′-UTR annotation and read coverage on the 3′-UTR regions. APA-Scan is implemented in Python3. Source code and a comprehensive user’s manual are freely available athttps://github.com/compbiolabucf/APA-Scan.

    Result

    APA-Scan was applied to both simulated and real RNA-seq datasets and compared with two widely used baselines DaPars and APAtrap. In simulation APA-Scan significantly improved the accuracy of 3′-UTR APA identification compared to the other baselines. The performance of APA-Scan was also validated by 3′-end-seq data and qPCR on mouse embryonic fibroblast cells. The experiments confirm that APA-Scan can detect unannotated 3′-UTR APA events and improve genome annotation.

    Conclusion

    APA-Scan is a comprehensive computational pipeline to detect transcriptome-wide 3′-UTR APA events. The pipeline integrates both RNA-seq and 3′-end-seq data information and can efficiently identify the significant events with a high-resolution short reads coverage plots.

     
    more » « less