skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A long-read and short-read transcriptomics approach provides the first high-quality reference transcriptome and genome annotation for Pseudotsuga menziesii (Douglas-fir)
Abstract Douglas-fir (Pseudotsuga menziesii) is native to western North America. It grows in a wide range of environmental conditions and is an important timber tree. Although there are several studies on the gene expression responses of Douglas-fir to abiotic cues, the absence of high-quality transcriptome and genome data is a barrier to further investigation. Like for most conifers, the available transcriptome and genome reference dataset for Douglas-fir remains fragmented and requires refinement. We aimed to generate a highly accurate, and complete reference transcriptome and genome annotation. We deep-sequenced the transcriptome of Douglas-fir needles from seedlings that were grown under nonstress control conditions or a combination of heat and drought stress conditions using long-read (LR) and short-read (SR) sequencing platforms. We used 2 computational approaches, namely de novo and genome-guided LR transcriptome assembly. Using the LR de novo assembly, we identified 1.3X more high-quality transcripts, 1.85X more “complete” genes, and 2.7X more functionally annotated genes compared to the genome-guided assembly approach. We predicted 666 long noncoding RNAs and 12,778 unique protein-coding transcripts including 2,016 putative transcription factors. We leveraged the LR de novo assembled transcriptome with paired-end SR and a published single-end SR transcriptome to generate an improved genome annotation. This was conducted with BRAKER2 and refined based on functional annotation, repetitive content, and transcriptome alignment. This high-quality genome annotation has 51,419 unique gene models derived from 322,631 initial predictions. Overall, our informatics approach provides a new reference Douglas-fir transcriptome assembly and genome annotation with considerably improved completeness and functional annotation.  more » « less
Award ID(s):
1943371
PAR ID:
10491506
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Holland, J.
Publisher / Repository:
Oxford
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
13
Issue:
2
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseRobust standards to evaluate quality and completeness are lacking in eukaryotic structural genome annotation, as genome annotation software is developed using model organisms and typically lacks benchmarking to comprehensively evaluate the quality and accuracy of the final predictions. The annotation of plant genomes is particularly challenging due to their large sizes, abundant transposable elements, and variable ploidies. This study investigates the impact of genome quality, complexity, sequence read input, and method on protein‐coding gene predictions. MethodsThe impact of repeat masking, long‐read and short‐read inputs, and de novo and genome‐guided protein evidence was examined in the context of the popular BRAKER and MAKER workflows for five plant genomes. The annotations were benchmarked for structural traits and sequence similarity. ResultsBenchmarks that reflect gene structures, reciprocal similarity search alignments, and mono‐exonic/multi‐exonic gene counts provide a more complete view of annotation accuracy. Transcripts derived from RNA‐read alignments alone are not sufficient for genome annotation. Gene prediction workflows that combine evidence‐based and ab initio approaches are recommended, and a combination of short and long reads can improve genome annotation. Adding protein evidence from de novo assemblies, genome‐guided transcriptome assemblies, or full‐length proteins from OrthoDB generates more putative false positives as implemented in the current workflows. Post‐processing with functional and structural filters is highly recommended. DiscussionWhile the annotation of non‐model plant genomes remains complex, this study provides recommendations for inputs and methodological approaches. We discuss a set of best practices to generate an optimal plant genome annotation and present a more robust set of metrics to evaluate the resulting predictions. 
    more » « less
  2. Abstract We present the first long-read de novo assembly and annotation of the luna moth (Actias luna) and provide the full characterization of heavy chain fibroin (h-fibroin), a long and highly repetitive gene (>20 kb) essential in silk fiber production. There are >160,000 described species of moths and butterflies (Lepidoptera), but only within the last 5 years have we begun to recover high-quality annotated whole genomes across the order that capture h-fibroin. Using PacBio HiFi reads, we produce the first high-quality long-read reference genome for this species. The assembled genome has a length of 532 Mb, a contig N50 of 16.8 Mb, an L50 of 14 contigs, and 99.4% completeness (BUSCO). Our annotation using Bombyx mori protein and A. luna RNAseq evidence captured a total of 20,866 genes at 98.9% completeness with 10,267 functionally annotated proteins and a full-length h-fibroin annotation of 2,679 amino acid residues. 
    more » « less
  3. Background: The family Batrachoididae are a group of ecologically important teleost fishes with unique life histories, behavior, and physiology that has made them popular model organisms. Batrachoididae remain understudied in the realm of genomics, with only four reference genome assemblies available for the family, with three being highly fragmented and not up to current assembly standards. Among these is the Gulf toadfish, Opsanus beta, a model organism for serotonin physiology which has recently been bred in captivity. Results: Here we present a new, de novo genome and transcriptome assemblies for the Gulf toadfish using PacBio long read technology. The genome size of the final assembly is 2.1 gigabases, which is among the largest teleost genomes. This new assembly improves significantly upon the currently available reference for Opsanus beta with a final scaffold count of 62, of which 23 are chromosome scale, an N50 of 98,402,768, and a BUSCO completeness score of 97.3%. Annotation with ab initio and transcriptome-based methods generated 41,076 gene models. The genome is highly repetitive, with ~ 70% of the genome composed of simple repeats and transposable elements. Satellite DNA analysis identified potential telomeric and centromeric regions. Conclusions: This improved assembly represents a valuable resource for future research using this important model organism and to teleost genomics more broadly. 
    more » « less
  4. Transcriptomic reconstructions without reference (i.e., de novo) are common for data samples derived from non-model biological systems. These assemblies involve massive parallel short read sequence reconstructions from experiments, but they usually employ ad-hoc bioinformatic workflows that exhibit limited standardization and customization. The increasing number of transcriptome assembly software continues to provide little room for standardization which is exacerbated by the lack of studies on modularity that compare the effects of assembler synergy. We developed a customizable management workflow for de novo transcriptomics that includes modular units for short read cleaning, assembly, validation, annotation, and expression analysis by connecting twenty-five individual bioinformatic tools. With our software tool, we were able to compare the assessment scores based on 129 distinct single-, bi- and tri-assembler combinations with diverse k-mer size selections. Our results demonstrate a drastic increase in the quality of transcriptome assemblies with bi- and tri- assembler combinations. We aim for our software to improve de novo transcriptome reconstructions for the ever-growing landscape of RNA-seq data derived from non-model systems. We offer guidance to ensure the most complete transcriptomic reconstructions via the inclusion of modular multi-assembly software controlled from a single master console. 
    more » « less
  5. The Gulf pipefish Syngnathus scovelli has emerged as an important species for studying sexual selection, development, and physiology. Comparative evolutionary genomics research involving fishes from Syngnathidae depends on having a high-quality genome assembly and annotation. However, the first S. scovelli genome assembled using short-read sequences and a smaller RNA-sequence dataset has limited contiguity and a relatively poor annotation. Here, using PacBio long-read high-fidelity sequences and a proximity ligation library, we generate an improved assembly to obtain 22 chromosome-level scaffolds. Compared to the first assembly, the gaps in the improved assembly are smaller, the N75 is larger, and our genome is ~95% BUSCO complete. Using a large body of RNA-Seq reads from different tissue types and NCBI's Eukaryotic Annotation Pipeline, we discovered 28,162 genes, of which 8,061 are non-coding genes. Our new genome assembly and annotation are tagged as a RefSeq genome by NCBI and provide enhanced resources for research work involving S. scovelli. 
    more » « less