skip to main content


This content will become publicly available on February 19, 2025

Title: Chlorinated Plastics Offer Unique Opportunities and Challenges in Upcycling
Abstract

Chlorinated plastics are part of the everyday lives of consumers and producers alike. They can be found in buildings, automobiles, fashion, packaging, and many other places. This prevalence makes them a considerable part of the plastic waste crisis. Interest in “upcycling” (as opposed to recycling) has grown recently to augment the possibilities of managing plastic waste. The advances made in plastic upcycling have focused on polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET) and polystyrene (PS) while chlorinated plastics, chiefly polyvinyl chloride (PVC), have received much less attention. The release of chlorine‐containing molecules during treatment of chlorinated plastic greatly complicates cross‐method upcycling, or even the treatment of plastic mixes containing chlorinated plastics. This review presents a case for extracting value from chlorinated plastics by highlighting appealing upcycling products made owing to, or despite, the C‐Cl bond via depolymerization, carbonization and modification.

This article is protected by copyright. All rights reserved.

 
more » « less
Award ID(s):
2132133
NSF-PAR ID:
10491530
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Polymer International
ISSN:
0959-8103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The global utilization of single-use, non-biodegradable plastics, such as bottles made of polyethylene terephthalate (PET), has contributed to catastrophic levels of plastic pollution. Fortu- nately, microbial communities are adapting to assimilate plastic waste. Previously, our work showed a full consortium of five bacteria capable of synergistically degrading PET. Using omics approaches, we identified the key genes implicated in PET degradation within the consortium’s pangenome and transcriptome. This analysis led to the discovery of a novel PETase, EstB, which has been observed to hydrolyze the oligomer BHET and the polymer PET. Besides the genes implicated in PET degradation, many other biodegradation genes were discovered. Over 200 plastic and plasticizer degradation-related genes were discovered through the Plastic Microbial Biodegradation Database (PMBD). Diverse carbon source utilization was observed by a microbial community-based assay, which, paired with an abundant number of plastic- and plasticizer-degrading enzymes, indicates a promising possibility for mixed plastic degradation. Using RNAseq differential analysis, several genes were predicted to be involved in PET degradation, including aldehyde dehydrogenases and several classes of hydrolases. Active transcription of PET monomer metabolism was also observed, including the generation of polyhydroxyalkanoate (PHA)/polyhydroxybutyrate (PHB) biopolymers. These results present an exciting opportunity for the bio-recycling of mixed plastic waste with upcycling potential. 
    more » « less
  2. Abstract

    Researchers have made headway against challenges of increasing cement infrastructure and low plastic recycling rates by using waste plastic in cementitious materials. Past studies indicate that microbially induced calcium carbonate precipitation (MICP) to coat plastic in calcium carbonate may improve the strength. The objective of this study was to increase the amount of clean and contaminated waste plastic that can be added to mortar and to assess whether MICP treatment enhances the strength. The performance of plastic-filled mortar was investigated at 5%, 10%, and 20% volume replacement for cement. Untreated, clean plastics at a 20% cement replacement produced compressive strengths acceptable for several applications. However, a coating of MICP on clean waste plastic did not improve the strengths. At 10% replacement, both MICP treatment and washing of contaminated plastics recovered compressive strengths by approximately 28%, relative to mortar containing oil-coated plastics. By incorporating greater volumes of waste plastics into mortar, the sustainability of cementitious composites has the potential of being improved by the dual mechanisms of reduced cement production and repurposing plastic waste.

     
    more » « less
  3. Abstract

    Responsible disposal of vehicles at the end of life is a pressing environmental concern. In particular, waste plastic forms the largest proportion of non-recycled waste material from light-duty vehicles, and often ends up in a landfill. Here we report the upcycling of depolluted, dismantled and shredded end-of-life waste plastic into flash graphene using flash Joule heating. The synthetic process requires no separation or sorting of plastics and uses no solvents or water. We demonstrate the practical value of the graphene as a re-inforcing agent in automotive polyurethane foam composite, where its introduction leads to improved tensile strength and low frequency noise absorption properties. We demonstrate process continuity by upcycling the resulting foam composite back into equal-quality flash graphene. A prospective cradle-to-gate life cycle assessment suggests that our method may afford lower cumulative energy demand and water use, and a decrease in global warming potential compared to traditional graphene synthesis methods.

     
    more » « less
  4. Management of the plastic industry is a momentous challenge, one that pits enormous societal benefits against an accumulating reservoir of nearly indestructible waste. A promising strategy for recycling polyethylene (PE) and isotactic polypropylene ( i PP), constituting roughly half the plastic produced annually worldwide, is melt blending for reformulation into useful products. Unfortunately, such blends are generally brittle and useless due to phase separation and mechanically weak domain interfaces. Recent studies have shown that addition of small amounts of semicrystalline PE- i PP block copolymers (ca. 1 wt%) to mixtures of these polyolefins results in ductility comparable to the pure materials. However, current methods for producing such additives rely on expensive reagents, prohibitively impacting the cost of recycling these inexpensive commodity plastics. Here, we describe an alternative strategy that exploits anionic polymerization of butadiene into block copolymers, with subsequent catalytic hydrogenation, yielding E and X blocks that are individually melt miscible with PE and i PP, where E and X are poly(ethylene- ran -ethylethylene) random copolymers with 6 wt% and 90 wt% ethylethylene repeat units, respectively. Cooling melt blended mixtures of PE and i PP containing 1 wt% of the triblock copolymer EXE of appropriate molecular weight, results in mechanical properties competitive with the component plastics. Blend toughness is obtained through interfacial topological entanglements of the amorphous X polymer and semicrystalline i PP, along with anchoring of the E blocks through cocrystallization with the PE homopolymer. Significantly, EXE can be inexpensively produced using currently practiced industrial scale polymerization methods, offering a practical approach to recycling the world’s top two plastics. 
    more » « less
  5. Abstract

    Polyethylene terephthalate (PET) is utilized as one of the most popular consumer plastics worldwide, but difficulties associated with recycling PET have generated a severe environmental crisis with most PET ending its lifecycle in landfills. We report that zirconium‐based metal–organic framework (Zr‐MOF) UiO‐66 deconstructs waste PET into the building blocks terephthalic acid (TA) and mono‐methyl terephthalate (MMT) within 24 hours at 260 °C (total yield of 98 % under 1 atm H2and 81 % under 1 atm Ar). Extensive structural characterization studies reveal that during the degradation process, UiO‐66 undergoes an intriguing transformation into MIL‐140A, which is another Zr‐MOF that shows good catalytic activity toward PET degradation under similar reaction conditions. These results illustrate the diversity of applications for Zr‐MOFs and establish MOFs as a new class of polymer degradation catalysts with the potential to address long‐standing challenges associated with plastic waste.

     
    more » « less