skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems
Physics-informed machine learning (PIML) is a set of methods and tools that systematically integrate machine learning (ML) algorithms with physical constraints and abstract mathematical models developed in scientific and engineering domains. As opposed to purely data-driven methods, PIML models can be trained from additional information obtained by enforcing physical laws such as energy and mass conservation. More broadly, PIML models can include abstract properties and conditions such as stability, convexity, or invariance. The basic premise of PIML is that the integration of ML and physics can yield more effective, physically consistent, and data-efficient models. This paper aims to provide a tutorial-like overview of the recent advances in PIML for dynamical system modeling and control. Specifically, the paper covers an overview of the theory, fundamental concepts and methods, tools, and applications on topics of: 1) physics-informed learning for system identification; 2) physics-informed learning for control; 3) analysis and verification of PIML models; and 4) physics-informed digital twins. The paper is concluded with a perspective on open challenges and future research opportunities.  more » « less
Award ID(s):
2138388 2238296 2513096 2514584
PAR ID:
10491565
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of the American Control Conference
ISSN:
2378-5861
ISBN:
979-8-3503-2806-6
Page Range / eLocation ID:
3735 to 3750
Format(s):
Medium: X
Location:
San Diego, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning (ML) has shown to be an effective alternative to physical models for quality prediction and process optimization of metal additive manufacturing (AM). However, the inherent “black box” nature of ML techniques such as those represented by artificial neural networks has often presented a challenge to interpret ML outcomes in the framework of the complex thermodynamics that govern AM. While the practical benefits of ML provide an adequate justification, its utility as a reliable modeling tool is ultimately reliant on assured consistency with physical principles and model transparency. To facilitate the fundamental needs, physics-informed machine learning (PIML) has emerged as a hybrid machine learning paradigm that imbues ML models with physical domain knowledge such as thermomechanical laws and constraints. The distinguishing feature of PIML is the synergistic integration of data-driven methods that reflect system dynamics in real-time with the governing physics underlying AM. In this paper, the current state-of-the-art in metal AM is reviewed and opportunities for a paradigm shift to PIML are discussed, thereby identifying relevant future research directions. 
    more » « less
  2. Abstract Physics-informed machine learning (PIML), the combination of prior physics knowledge with data-driven machine learning models, has emerged as an effective means of mitigating a shortage of training data, increasing model generalizability, and ensuring physical plausibility of results. In this paper, we survey a wide variety of recent works in PIML and summarize them from three key aspects: 1) motivations of PIML, 2) physics knowledge in PIML, and 3) methods of physics knowledge integration in PIML. We additionally discuss current challenges and corresponding research opportunities in PIML. 
    more » « less
  3. This tutorial paper focuses on safe physics- informed machine learning in the context of dynamics and control, providing a comprehensive overview of how to integrate physical models and safety guarantees. As machine learning techniques enhance the modeling and control of complex dynamical systems, ensuring safety and stability remains a critical challenge, especially in safety-critical applications like autonomous vehicles, robotics, medical decision-making, and energy systems. We explore various approaches for embedding and ensuring safety constraints, including structural priors, Lyapunov and Control Barrier Functions, predictive control, projections, and robust optimization techniques. Additionally, we delve into methods for uncertainty quantification and safety verification, including reachability analysis and neural network verification tools, which help validate that control policies remain within safe operating bounds even in uncertain environments. The paper includes illustrative examples demonstrating the implementation aspects of safe learning frameworks that combine the strengths of data-driven approaches with the rigor of physical principles, offering a path toward the safe control of complex dynamical systems. 
    more » « less
  4. Recent advancements in physics-informed machine learning have contributed to solving partial differential equations through means of a neural network. Following this, several physics-informed neural network works have followed to solve inverse problems arising in structural health monitoring. Other works involving physics-informed neural networks solve the wave equation with partial data and modeling wavefield data generator for efficient sound data generation. While a lot of work has been done to show that partial differential equations can be solved and identified using a neural network, little work has been done the same with more basic machine learning (ML) models. The advantage with basic ML models is that the parameters learned in a simpler model are both more interpretable and extensible. For applications such as ultrasonic nondestructive evaluation, this interpretability is essential for trustworthiness of the methods and characterization of the material system under test. In this work, we show an interpretable, physics-informed representation learning framework that can analyze data across multiple dimensions (e.g., two dimensions of space and one dimension of time). The algorithm comes with convergence guarantees. In addition, our algorithm provides interpretability of the learned model as the parameters correspond to the individual solutions extracted from data. We demonstrate how this algorithm functions with wavefield videos. 
    more » « less
  5. Abstract Adhesive bonding of composite materials has become increasingly crucial for advanced engineering applications, offering unique advantages for lightweight and high-performance designs. This study presents a novel framework, physics-informed failure mode proportion prediction (PIFMP) model, for predicting failure mode proportions in composite adhesive joints, addressing critical gaps in understanding mixed-mode failure behaviors. In contrast to conventional approaches that focus solely on force or stress prediction, this research integrates important parameters from multistage manufacturing processes (MMPs) and simulation data into a physics-informed machine learning (PIML) framework, enabling proactive failure prediction and design optimization. The proposed framework unifies data-driven machine learning models with features derived from finite element analysis (FEA), incorporating cohesive zone modeling (CZM) to capture the physical dynamics of adhesive behavior under lap shearing. By embedding FEA-based physics features into the machine learning process and leveraging a time-series transformer model to analyze the temporal progression of interfacial damage and separation, the framework ensures predictive accuracy and physics-informed consistency, enabling precise analysis of failure mechanisms. The empirical study validates the effectiveness and the reliability of the framework, demonstrating enhanced predictive performance through cross-validation. The work establishes a foundational approach for failure analysis and provides a robust basis for future advancements. 
    more » « less