skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lithospheric mantle xenolith geochemistry from south-central Vietnam: Trace elements
Trace element data measured by LA-ICP-MS analysis in crystal separates for lithospheric mantle xenoliths from south-central Vietnam. Samples are peridotite xenoliths from two alkali basalt locations in Vietnam, Pleiku and Xuan Loc. Data are trace elements measured by LA-ICP-MS in mineral separates.  more » « less
Award ID(s):
1758972
PAR ID:
10491586
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Interdisciplinary Earth Data Alliance (IEDA)
Date Published:
Edition / Version:
1.0
Subject(s) / Keyword(s):
Regional (Continents, Oceans) mantle xenoliths, peridotite
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Radiogenic isotope data measured in lithospheric mantle xenolith whole rocks from south-central Vietnam. Samples are peridotite xenoliths from two alkali basalt locations in Vietnam, Pleiku and Xuan Loc. Data are radiogenic isotopes measured by TIMS and MC-ICP-MS in clinopyroxene mineral separates. 
    more » « less
  2. Major element data measured by electron probe analysis in crystal separates for lithospheric mantle xenoliths from south-central Vietnam. Samples are peridotite xenoliths from two alkali basalt locations in Vietnam, Pleiku and Xuan Loc. Data are major elements measured by EPMA in mineral separates. 
    more » « less
  3. Mineral and fluid inclusion data collected from a suite a gabbro xenoliths found on the island of Floreana in the southern Galapagos. Mineral chemistry is primarily determined by SEM-based EDS and WDS analysis with LA ICP-MS used to determine the clinopyroxene trace element contents. Microthermometry and Raman analysis are used to assess the composition and CO2 density of clinopyroxene and plagioclase hosted fluid inclusions. 
    more » « less
  4. Isotope ratio analyses of trace elements are applied to tooth enamel, ostrich eggshell, and other archaeological hard tissues to infer mobility and other aspects of hominin and animal paleoecology. It has been assumed that these highly mineralized tissues are resistant to diagenetic alteration, but this is seldom tested and some studies document diagenetic alteration over brief time spans. Here, we build on existing research on Maximum Threshold Concentrations (MTCs) to develop screening tools for diagenesis that can inform heavy isotopic analyses. The premise of the MTC approach is that archaeological tissues are likely contaminated and unsuitable for isotope ratio analysis when they exceed characteristic modern concentration ranges of trace elements. Furthermore, we propose a new metric called the Maximum Threshold Ratio (MTR) of 85Rb/88Sr or whole element Rb/Sr, which can be measured simultaneously with 87Sr/86Sr during laser ablation (LA) MC-ICP-MS or applied during post hoc screening of specimens. We analyzed 56 enamel samples from modern Kenyan mammals and 34 modern ostrich eggshells from South Africa, Namibia, and the United States by solution ICP-MS, as well as a subset of shells using LA-MC-ICP-MS. Our results indicate that thresholds are consistent across taxa at a single location, but likely vary across locations. Therefore, MTCs and MTRs need to be tissue and locality specific, but not necessarily taxon-specific. Other important differences are observed between the inner and outer surfaces of the eggshells and between LA and solution ICP-MS. This exploratory study provides guidelines for building reference thresholds to screen enamel and eggshell for diagenesis potentially impacting biogenic isotope ratios. 
    more » « less
  5. We present data for lithospheric mantle xenoliths sampled from two alkali basalts in south‐central Vietnam, Pleiku and Xuan Loc, including fertile spinel peridotites. To better determine the origins of the Indochinese subcontinental lithospheric mantle (SCLM), including impacts of posited tectonic extrusion, we present major and trace elements, and 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb in xenolith mineral separates. Most peridotites from Pleiku and Xuan Loc have fertile major element compositions, “depleted” and “spoon‐shaped” rare earth element (REE) patterns, interpreted to record prior melt depletion followed by melt metasomatism, and variable but generally depleted isotopic signatures (e.g., 87Sr/86Sr = 0.70238–0.70337 and 143Nd/144Nd = 0.512921–0.514190). A small group of refractory peridotites have “enriched” REE patterns suggesting more extensive metasomatism and enriched isotope ratios (87Sr/86Sr = 0.70405 and 143Nd/144Nd = 0.512755–0.512800). The presence of both fertile and refractory xenoliths records a heterogeneous SCLM beneath Vietnam. Based on geothermobarometry calculations, fertile xenoliths have equilibrium temperatures of 923–1,034°C and pressures of 11.7–15.8 kbar, while refractory xenoliths have comparable temperatures of 923–1,006°C, but lower pressures of 7.1–10.0 kbar, suggesting refractory rocks are dominantly present at shallower depths. We suggest that the lithospheric mantle has experienced variable melt extraction around 1.0–1.3 Ga, producing heterogeneous major element compositions. While we cannot rule out partial removal and replacement of the lithosphere, large‐scale delamination is not necessary to explain observed characteristics. The entire SCLM was more recently metasomatized by melts resembling Cenozoic basalts, suggesting recent asthenospheric melting has modified the SCLM by melt infiltration. 
    more » « less