skip to main content


Title: The Duality Droop Control for Grid-Tied Cascaded Microinverter
Cascaded Connected Microinverter (CCM) system takes the advantage of adapting low voltage stress submodules to build the high voltage output, which makes it easier and safer to achieve for many applications. The distribution of active and reactive power in the CCM system has always been interdependent, resulting in additional communication components in different submodules. Such communication components within different submodules can be avoided by droop control. Droop control is widely adopted in parallel inverter system, and it originates from the synchronous generator that active power is controlled by adjusting synchronous generator's frequency and reactive power is controlled by adjusting its output voltage. However, the traditional droop control is not suitable for the cascaded microinverter inverter system. Therefore, it's necessary to modify the droop control to make it suitable for Cascaded Microinverter system, and therefore a control method called inverse droop control is adopted for cascaded inverter system under island mode. However, it requires a large feeder inductor when it's grid connected since every submodule works as voltage source inverter. In this paper, a duality control method that feedbacks each submodule's active power and reactive power to adjust its inductor current amplitude and frequency respectively is proposed. Compared with traditional cascaded inverter system that's controlled by inverse droop control method, the big line frequency feeder inductor is saved.  more » « less
Award ID(s):
2006173
NSF-PAR ID:
10491605
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
2424 to 2430
Format(s):
Medium: X
Location:
Orlando, FL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, a synchronous model for grid-connected and islanded microgrids is presented. The grid-connected model is based on the premise that the reference frame is synchronized with the AC bus. The quadrature component of the AC bus voltage can be cancelled, which allows to express output power as a linear equation for nominal values in the AC bus amplitude voltage. The model for the islanded microgrid is developed by integrating all the inverter dynamics using a state-space model for the load currents. This model is presented in a comprehensive way such that it could be scalable to any number of inverter-based generators using inductor–capacitor–inductor (LCL) output filters. The use of these models allows designers to assess microgrid stability and robustness using modern control methods such as eigenvalue analysis and singular value diagrams. Both models were tested and validated in an experimental setup to demonstrate their accuracy in describing microgrid dynamics. In addition, three scenarios are presented: non-controlled model, Linear-Quadratic Integrator (LQI) power control, and Power-Voltage (PQ/Vdq) droop–boost controller. Experimental results demonstrate the effectiveness of the control strategies and the accuracy of the models to describe microgrid dynamics. 
    more » « less
  2. Microgrids must be able to restore voltage and frequency to their reference values during transient events; inverters are used as part of a microgrid's hierarchical control for maintaining power quality. Reviewed methods either do not allow for intuitive trade-off tuning between the objectives of synchronous state restoration, local reference tracking, and disturbance rejection, or do not consider all of these objectives. In this paper, we address all of these objectives for voltage restoration in droop-controlled inverter-based islanded micro-grids. By using distributed model predictive control (DMPC) in series with an unscented Kalman Filter (UKF), we design a secondary voltage controller to restore the voltage to the reference in finite time. The DMPC solves a reference tracking problem while rejecting reactive power disturbances in a noisy system. The method we present accounts for non-zero mean disturbances by design of a random-walk estimator. We validate the method's ability to restore the voltage in finite time via modeling a multi-node microgrid in Simulink. 
    more » « less
  3. null (Ed.)
    The interconnection of distributed energy resources (DERs) in microgrids (MGs) operating in both islanded and grid-connected modes require coordinated control strategies. DERs are interfaced with voltage source inverters (VSIs) enabling interconnection. This paper proposes a load demand sharing scheme for the parallel operation of VSIs in an islanded voltage source inverter-based microgrid (VSI-MG). The ride-through capability of a heavily loaded VSI-MG, where some of the VSIs are fully loaded due to the occurrence of an event is investigated. In developing analytical equations to model the VSI, the concept of virtual synchronous machines (VSM) is applied to enable the VSI mimic the inertia effect of synchronous machines. A power frame transformation (PFT) that takes the line ratios of the MG network into account is also incorporated to yield satisfactory transient responses of both network frequency and bus voltages in the MG network. A Jacobian-based method is then developed to take into account the operational capacity of each VSI in the VSI-MG. The resulting amendable droop control constrains the VSIs within their power capabilities when an event occurs. Simulation results presented within demonstrate the effectiveness of the proposed procedure which has great potential to facilitate efforts in maintaining system reliability and resiliency. 
    more » « less
  4. This paper proposes a combination of cell-level energy processing and a Cascaded H-Bridge Multilevel Inverter (CHBMLI) for medium voltage, grid connected, battery energy storage systems. One isolated converter (Dual Active Bridge DC-DC Converter) manages each cell in the Battery Module, and the combination of Battery module and converter modules are cascaded to get the multi-level ac output voltage. The operating principle and control design of cell level isolated converter with double frequency ripple power, and the control strategy of the CHBMLI are presented. The performance of the battery cell level CHBMLI system with a 9-level inverter at small scale power level is validated through the simulations in MATLAB ® /SIMULINK ® software. The configuration holds promise for improving the performance and reliability of the battery modules at the cell level while also providing cell level galvanic isolation and high ac voltage. 
    more » « less
  5. Overvoltage is one of the major issues on distribution grids with high penetration of photovoltaic (PV) generation. Overvoltage could be prevented through the control of active/reactive power of PVs. However, given the high R/X ratio of low voltage feeders, voltage control by using reactive power would not be as effective as using active power. Therefore, active power curtailment (APC) of PVs, though not desirable, becomes necessary at times to prevent the overvoltage issues. Existing literature is rich in centralized and droop-based methods for APC and/or reactive power control of PVs to prevent overvoltage issues. In this context, this paper revisits the most popular existing methods, and evaluates the performance of droop-based and centralized methods using a typical North American 240 V low voltage feeder with 24 residential homes. In this work, our key findings are: a) droop-based methods provided conservative solutions or did not eliminate the overvoltages completely, b) power flow sensitivity based droop approach led to 13% more curtailment than the centralized approaches, c) centralized approach had 40% less energy curtailed compared with standard droop while no overvoltages were observed, and d) operating PVs at non-unity power factor in centralized approach led to 5% less energy curtailment. 
    more » « less