skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Potential energy surfaces and dynamic properties via ab initio composite and density functional approaches
Abstract Vibrational spectroscopy enables critical insight into the structural and dynamic properties of molecules. Presently, the majority of theoretical approaches to spectroscopy employ wavefunction‐basedab initioor density functional methods that rely on the harmonic approximation. This approximation breaks down for large molecules with strongly anharmonic bonds or for molecules with large internuclear separations. An alternative to these methods involves generating molecular anharmonic potential energy surfaces (potentials) and using them to extrapolate the vibrational frequencies. This study examines the efficacy of density functional theory (DFT) and the correlation consistent Composite Approach (ccCA) in generating anharmonic frequencies from potentials of small main group molecules. Vibrational self‐consistent field Theory (VSCF) and post‐VSCF methods were used to calculate the fundamental frequencies of these molecules from their potentials. Functional choice, basis set selection, and mode‐coupling are also examined as factors in influencing accuracy. The absolute deviations for the calculated frequencies using potentials at the ccCA level of theory were lower than the potentials at the DFT level. With DFT resulting in bending modes that are better described than those of ccCA, a multilevel DFT:ccCA approach where DFT potentials are used for single vibrational mode potentials and ccCA is used for vibrational mode‐mode couplings can be utilized for larger polyatomic systems. The frequencies obtained with this multilevel approach using VCIPSI‐PT2 were closer to experimental frequencies than the scaled harmonic frequencies, indicating the success of utilizing post‐VSCF methods to generate more accurate representations of computed infrared spectra.  more » « less
Award ID(s):
2154526
PAR ID:
10491618
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
45
Issue:
16
ISSN:
0192-8651
Format(s):
Medium: X Size: p. 1352-1363
Size(s):
p. 1352-1363
Sponsoring Org:
National Science Foundation
More Like this
  1. An approach to generate anharmonic potential energy surfaces for both linear and bent XY 2 -type molecules from their equilibrium geometries, Hessians, and total atomization energies alone is presented. Two key features of the potential energy surfaces are that (a) they reproduce the harmonic behavior around the equilibrium geometries exactly and (b) they have the correct limiting behavior with respect to total bond dissociation. The potentials are constructed from two diatomic potentials, for which both the Morse or Varshni potentials are tested, and a triatomic potential, for which modified forms of the Anderson- n potential are tested. Potential energy surfaces for several linear and bent molecules are constructed from ab initio data, and the third-order derivatives of these surfaces at their equilibrium geometries are compared to the results of finite difference computations. For bent molecules, the vibrational spectra predicted by vibrational configuration interaction calculations on these surfaces are compared to experiment. A modified version of the Anderson- n potential, in combination with the Varshni potential, is demonstrated to predict vibrational frequencies associated with bond angle bending an average of 20 cm −1 below the harmonic oscillator approximation and with a fourfold reduction in the root-mean-square deviation from experiment compared to the harmonic oscillator approximation. 
    more » « less
  2. Two-color, two-photon laser-induced fluorescence experiments were performed to probe the intermolecular interactions within the Ar + I2(E, vE = 0–3) potential energy surfaces. Spectra were recorded using the lowest-energy T-shaped level and an excited intermolecular vibrational level with bending excitation within the Ar + I2(B, vB = 23) potential as intermediate levels to guide the spectral assignments. Progressions of intermolecular stretching and bending levels bound within the Ar + I2(E, vE) potentials were identified, and their vibrational frequencies were determined. The harmonic frequency and anharmonic constant for the bending vibrational mode were determined to be ωe(b) ∼ 34.8 cm−1 and ωeχe(b) ∼ 0.3 cm−1. The frequency and anharmonic constant for the stretching mode were found to be the same as reported previously [V.V. Baturo, et al. Chem. Phys. Lett. 647 (2016) 161], ωe(s) = 37.2(1.1) cm−1 and ωeχe(s) = 1.8(2) cm−1. 
    more » « less
  3. The terminal alkyne C≡C stretch has a large Raman scattering cross section in the “silent” region for biomolecules. This has led to many Raman tag and probe studies using this moiety to study biomolecular systems. A computational investigation of these systems is vital to aid in the interpretation of these results. In this work, we develop a method for computing terminal alkyne vibrational frequencies and isotropic transition polarizabilities that can easily and accurately be applied to any terminal alkyne molecule. We apply the discrete variable representation method to a localized version of the C≡C stretch normal mode. The errors of (1) vibrational localization to the terminal alkyne moiety, (2) anharmonic normal mode isolation, and (3) discretization of the Born–Oppenheimer potential energy surface are quantified and found to be generally small and cancel each other. This results in a method with low error compared to other anharmonic vibrational methods like second-order vibrational perturbation theory and to experiments. Several density functionals are tested using the method, and TPSS-D3, an inexpensive nonempirical density functional with dispersion corrections, is found to perform surprisingly well. Diffuse basis functions are found to be important for the accuracy of computed frequencies. Finally, the computation of vibrational properties like isotropic transition polarizabilities and the universality of the localized normal mode for terminal alkynes are demonstrated. 
    more » « less
  4. Ion receptors are molecular hosts that bind ionic guests, often with great selectivity. The interplay of solvation and ion binding in anion host-guest complexes in solution governs the binding efficiency and selectivity of such ion receptors. To gain molecular-level insight into the intrinsic binding properties of octamethyl calix[4]pyrrole (omC4P) host molecules with halide guest ions, we performed cryogenic ion vibrational spectroscopy (CIVS) of omC4P in complexes with fluoride, chloride, and bromide ions. We interpret the spectra using density functional theory, describing the infrared spectra of these complexes with both harmonic and anharmonic second-order vibrational perturbation theory (VPT2) calculations. The NH stretching modes of the pyrrole moieties serve as sensitive probes of the ion binding properties, as their frequencies encode the ion-receptor interactions. While scaled harmonic spectra reproduce the experimental NH stretching modes of the chloride and bromide complexes in broad strokes, the high proton affinity of fluoride introduces strong anharmonic effects. As a result, the spectrum of F−·omC4P is not even qualitatively captured by harmonic calculations, but it is recovered very well by VPT2 calculations. In addition, the VPT2 calculations recover the intricate coupling of the NH stretching modes with overtones and combination bands of CH stretching and NH bending modes and with low-frequency vibrations of the omC4P macrocycle, which are apparent for all halide ion complexes investigated here. A comparison of the CIVS spectra with infrared spectra of solutions of the same ion-receptor complexes in d3-acetonitrile and d6-acetone shows how ion solvation changes the ion-receptor interactions for the different halide ions. 
    more » « less
  5. The vibrational dynamics of diborane have been extensively studied both theoretically and experimentally ever since the bridge structure of diborane was established in the 1950s. Numerous infrared and several Raman spectroscopic studies have followed in the ensuing years at ever increasing levels of spectral resolution. In parallel, ab initio computations of the underlying potential energy surface have progressed as well as the methods to calculate the anharmonic vibration dynamics beyond the double harmonic approximation. Nevertheless, even 70 years after the bridge structure of diborane was established, there are still significant discrepancies between experiment and theory for the fundamental vibrational frequencies of diborane. In this work we use para-hydrogen (pH2) matrix isolation infrared spectroscopy to characterize six fundamental vibrations of B2H6 and B2D6 and compare them with results from configuration-selective vibrational configuration interaction theory. The calculated frequencies and intensities are in very good agreement with the pH2 matrix isolation spectra, even several combination bands are well reproduced. We believe that the reason discrepancies have existed for so long is related to the large amount of anharmonicity that is associated with the bridge BH stretching modes. However, the calculated frequencies and intensities reported here for the vibrational modes of all three boron isotopologues of B2H6 and B2D6 are within ± 2.00 cm− 1 and ± 1.44 cm− 1, respectively, of the experimental frequencies and therefore a refined vibrational assignment of diborane has been achieved. 
    more » « less