skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2154526

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Vibrational spectroscopy enables critical insight into the structural and dynamic properties of molecules. Presently, the majority of theoretical approaches to spectroscopy employ wavefunction‐basedab initioor density functional methods that rely on the harmonic approximation. This approximation breaks down for large molecules with strongly anharmonic bonds or for molecules with large internuclear separations. An alternative to these methods involves generating molecular anharmonic potential energy surfaces (potentials) and using them to extrapolate the vibrational frequencies. This study examines the efficacy of density functional theory (DFT) and the correlation consistent Composite Approach (ccCA) in generating anharmonic frequencies from potentials of small main group molecules. Vibrational self‐consistent field Theory (VSCF) and post‐VSCF methods were used to calculate the fundamental frequencies of these molecules from their potentials. Functional choice, basis set selection, and mode‐coupling are also examined as factors in influencing accuracy. The absolute deviations for the calculated frequencies using potentials at the ccCA level of theory were lower than the potentials at the DFT level. With DFT resulting in bending modes that are better described than those of ccCA, a multilevel DFT:ccCA approach where DFT potentials are used for single vibrational mode potentials and ccCA is used for vibrational mode‐mode couplings can be utilized for larger polyatomic systems. The frequencies obtained with this multilevel approach using VCIPSI‐PT2 were closer to experimental frequencies than the scaled harmonic frequencies, indicating the success of utilizing post‐VSCF methods to generate more accurate representations of computed infrared spectra. 
    more » « less
  2. The discrepancy in single referenceversusmultireference guess orbitals in the strongly correlated LuN. 
    more » « less
  3. The correlation consistent basis sets (cc-pVnZ with n = D, T, Q, 5) for the Ga–Br elements have been redesigned, tuning the sets for use for density functional approximations. Steps to redesign these basis sets for an improved correlation energy recovery and efficiency include truncation of higher angular momentum functions, recontraction of basis set coefficients, and reoptimization of basis set exponents. These redesigned basis sets are compared with conventional cc-pVnZ basis sets and other basis sets, which are, in principle, designed to achieve systematic improvement with respect to increasing basis set size. The convergence of atomic energies, bond lengths, bond dissociation energies, and enthalpies of formation to the Kohn–Sham limit is improved relative to other basis sets where convergence to the Kohn–Sham limit is typically not observed. 
    more » « less