skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emergent temperature sensitivity of soil organic carbon driven by mineral associations
Abstract Soil organic matter decomposition and its interactions with climate depend on whether the organic matter is associated with soil minerals. However, data limitations have hindered global-scale analyses of mineral-associated and particulate soil organic carbon pools and their benchmarking in Earth system models used to estimate carbon cycle–climate feedbacks. Here we analyse observationally derived global estimates of soil carbon pools to quantify their relative proportions and compute their climatological temperature sensitivities as the decline in carbon with increasing temperature. We find that the climatological temperature sensitivity of particulate carbon is on average 28% higher than that of mineral-associated carbon, and up to 53% higher in cool climates. Moreover, the distribution of carbon between these underlying soil carbon pools drives the emergent climatological temperature sensitivity of bulk soil carbon stocks. However, global models vary widely in their predictions of soil carbon pool distributions. We show that the global proportion of model pools that are conceptually similar to mineral-protected carbon ranges from 16 to 85% across Earth system models from the Coupled Model Intercomparison Project Phase 6 and offline land models, with implications for bulk soil carbon ages and ecosystem responsiveness. To improve projections of carbon cycle–climate feedbacks, it is imperative to assess underlying soil carbon pools to accurately predict the distribution and vulnerability of soil carbon.  more » « less
Award ID(s):
1926413 2031238 2031253
PAR ID:
10491626
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Geoscience
Volume:
17
Issue:
3
ISSN:
1752-0894
Format(s):
Medium: X Size: p. 205-212
Size(s):
p. 205-212
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Soil organic matter (SOM) dynamics in ecosystem-scale biogeochemical modelshave traditionally been simulated as immeasurable fluxes between conceptuallydefined pools. This greatly limits how empirical data can be used to improvemodel performance and reduce the uncertainty associated with theirpredictions of carbon (C) cycling. Recent advances in our understanding ofthe biogeochemical processes that govern SOM formation and persistence demanda new mathematical model with a structure built around key mechanisms andbiogeochemically relevant pools. Here, we present one approach that aims toaddress this need. Our new model (MEMS v1.0) is developed from the MicrobialEfficiency-Matrix Stabilization framework, which emphasizes the importance oflinking the chemistry of organic matter inputs with efficiency of microbialprocessing and ultimately with the soil mineral matrix, when studying SOMformation and stabilization. Building on this framework, MEMS v1.0 is alsocapable of simulating the concept of C saturation and representsdecomposition processes and mechanisms of physico-chemical stabilization todefine SOM formation into four primary fractions. After describing the modelin detail, we optimize four key parameters identified through avariance-based sensitivity analysis. Optimization employed soil fractionationdata from 154 sites with diverse environmental conditions, directly equatingmineral-associated organic matter and particulate organic matter fractionswith corresponding model pools. Finally, model performance was evaluatedusing total topsoil (0–20 cm) C data from 8192 forest and grassland sitesacross Europe. Despite the relative simplicity of the model, it was able toaccurately capture general trends in soil C stocks across extensive gradientsof temperature, precipitation, annual C inputs and soil texture. The novelapproach that MEMS v1.0 takes to simulate SOM dynamics has the potential toimprove our forecasts of how soils respond to management and environmentalperturbation. Ensuring these forecasts are accurate is key to effectivelyinforming policy that can address the sustainability of ecosystem servicesand help mitigate climate change. 
    more » « less
  2. Abstract. Peatlands have often been neglected in Earth system models (ESMs).Where they are included, they are usually represented via a separate, prescribed grid cell fraction that is given the physical characteristics of a peat (highly organic) soil. However, in reality soils vary on a spectrum between purely mineral soil (no organic material) and purely organicsoil, typically with an organic layer of variable thickness overlying mineral soil below. They are also dynamic, with organic layer thickness and its properties changing over time. Neither the spectrumof soil types nor their dynamic nature can be captured by current ESMs. Here we present a new version of an ESM land surface scheme (Joint UK Land Environment Simulator, JULES) where soil organic matter accumulation – and thus peatland formation, degradation and stability – is integratedin the vertically resolved soil carbon scheme. We also introduce the capacity to track soil carbon age as a function of depth in JULES and compare this to measured peat age–depth profiles. The new scheme is tested and evaluated at northern and temperate sites. This scheme simulates dynamic feedbacks between the soil organic material and its thermal and hydraulic characteristics. We show that draining the peatlands can lead to significant carbon loss, soil compaction and changes in peat properties. However, negative feedbacks can lead to the potential for peatlands to rewet themselves following drainage.These ecohydrological feedbacks can also lead to peatlands maintaining themselves in climates where peat formation would not otherwise initiate in the model, i.e. displaying some degree of resilience. The new model produces similar results to the original model for mineral soils and realistic profiles of soil organic carbon for peatlands.We evaluate the model against typical peat profiles based on 216 northern and temperate sites from a global dataset of peat cores.The root-mean-squared error (RMSE) in the soil carbon profile is reduced by 35 %–80 % in the best-performing JULES-Peat simulationscompared with the standard JULES configuration. The RMSE in these JULES-Peat simulations is 7.7–16.7 kg C m−3 depending on climate zone, which is considerably smaller than the soil carbon itself (around 30–60 kg C m−3). The RMSE at mineral soil sites is also reducedin JULES-Peat compared with the original JULES configuration (reduced by ∼ 30 %–50 %). Thus, JULES-Peat can be used as a complete scheme that simulates both organic and mineral soils. It does not requireany additional input data and introduces minimal additional variables to the model. This provides a new approach for improving the simulation of organic and peatland soils andassociated carbon-cycle feedbacks in ESMs. 
    more » « less
  3. Mineral stabilization of soil organic matter is an important regulator of the global carbon (C) cycle. However, the vulnerability of mineral-stabilized organic matter (OM) to climate change is currently unknown. We examined soil profiles from 34 sites across the conterminous USA to investigate how the abundance and persistence of mineral-associated organic C varied with climate at the continental scale. Using a novel combination of radiocarbon and molecular composition measurements, we show that the relationship between the abundance and persistence of mineral-associated organic matter (MAOM) appears to be driven by moisture availability. In wetter climates where precipitation exceeds evapotranspiration, excess moisture leads to deeper and more prolonged periods of wetness, creating conditions which favor greater root abundance and also allow for greater diffusion and interaction of inputs with MAOM. In these humid soils, mineral-associated soil organic C concentration and persistence are strongly linked, whereas this relationship is absent in drier climates. In arid soils, root abundance is lower, and interaction of inputs with mineral surfaces is limited by shallower and briefer periods of moisture, resulting in a disconnect between concentration and persistence. Data suggest a tipping point in the cycling of mineral-associated C at a climate threshold where precipitation equals evaporation. As climate patterns shift, our findings emphasize that divergence in the mechanisms of OM persistence associated with historical climate legacies need to be considered in process-based models. 
    more » « less
  4. Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long-­ term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long-­ term warming, we sampled soils from 13-­ and 28-­ year-­ old soil warming experiments in different seasons. We performed short-­ term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally-­ induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C-­ cycling processes to decadal warming. Our findings reveal that long-term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long-­ term warming effects on these soils. 
    more » « less
  5. Abstract Identifying controls on soil organic carbon (SOC) storage, and where SOC is most vulnerable to loss, are essential to managing soils for both climate change mitigation and global food security. However, we currently lack a comprehensive understanding of the global drivers of SOC storage, especially with regards to particulate (POC) and mineral‐associated organic carbon (MAOC). To better understand hierarchical controls on POC and MAOC, we applied path analyses to SOC fractions, climate (i.e., mean annual temperature [MAT] and mean annual precipitation minus potential evapotranspiration [MAP‐PET]), carbon (C) input (i.e., net primary production [NPP]), and soil property data synthesized from 72 published studies, along with data we generated from the National Ecological Observatory Network soil pits (n = 901 total observations). To assess the utility of investigating POC and MAOC separately in understanding SOC storage controls, we then compared these results with another path analysis predicting bulk SOC storage. We found that POC storage is negatively related to MAT and soil pH, while MAOC storage is positively related to NPP and MAP‐PET, but negatively related to soil % sand. Our path analysis predicting bulk SOC revealed similar trends but explained less variation in C storage than our POC and MAOC analyses. Given that temperature and pH impose constraints on microbial decomposition, this indicates that POC is primarily controlled by SOC loss processes. In contrast, strong relationships with variables related to plant productivity constraints, moisture, and mineral surface availability for sorption indicate that MAOC is primarily controlled by climate‐driven variations in C inputs to the soil, as well as C stabilization mechanisms. Altogether, these results demonstrate that global POC and MAOC storage are controlled by separate environmental variables, further justifying the need to quantify and model these C fractions separately to assess and forecast the responses of SOC storage to global change. 
    more » « less