skip to main content

Title: Dust polarized emission observations of NGC 6334: BISTRO reveals the details of the complex but organized magnetic field structure of the high-mass star-forming hub-filament network
Context. Molecular filaments and hubs have received special attention recently thanks to new studies showing their key role in star formation. While the (column) density and velocity structures of both filaments and hubs have been carefully studied, their magnetic field (B-field) properties have yet to be characterized. Consequently, the role of B-fields in the formation and evolution of hub-filament systems is not well constrained. Aims. We aim to understand the role of the B-field and its interplay with turbulence and gravity in the dynamical evolution of the NGC 6334 filament network that harbours cluster-forming hubs and high-mass star formation. Methods. We present new observations of the dust polarized emission at 850 μ m toward the 2 pc × 10 pc map of NGC 6334 at a spatial resolution of 0.09 pc obtained with the James Clerk Maxwell Telescope (JCMT) as part of the B-field In STar-forming Region Observations (BISTRO) survey. We study the distribution and dispersion of the polarized intensity ( PI ), the polarization fraction ( PF ), and the plane-of-the-sky B-field angle ( χ B_POS ) toward the whole region, along the 10 pc-long ridge and along the sub-filaments connected to the ridge and the hubs. We derived more » the power spectra of the intensity and χ B POS along the ridge crest and compared them with the results obtained from simulated filaments. Results. The observations span ~3 orders of magnitude in Stokes I and PI and ~2 orders of magnitude in PF (from ~0.2 to ~ 20%). A large scatter in PI and PF is observed for a given value of I . Our analyses show a complex B-field structure when observed over the whole region (~ 10 pc); however, at smaller scales (~1 pc), χ B POS varies coherently along the crests of the filament network. The observed power spectrum of χ B POS can be well represented with a power law function with a slope of − 1.33 ± 0.23, which is ~20% shallower than that of I . We find that this result is compatible with the properties of simulated filaments and may indicate the physical processes at play in the formation and evolution of star-forming filaments. Along the sub-filaments, χ B POS rotates frombeing mostly perpendicular or randomly oriented with respect to the crests to mostly parallel as the sub-filaments merge with the ridge and hubs. This variation of the B-field structure along the sub-filaments may be tracing local velocity flows of infalling matter in the ridge and hubs. Our analysis also suggests a variation in the energy balance along the crests of these sub-filaments, from magnetically critical or supercritical at their far ends to magnetically subcritical near the ridge and hubs. We also detect an increase in PF toward the high-column density ( N H 2 ≳ 10 23  cm −2 ) star cluster-forming hubs. These latter large PF values may be explained by the increase in grain alignment efficiency due to stellar radiation from the newborn stars, combined with an ordered B-field structure. Conclusions. These observational results reveal for the first time the characteristics of the small-scale (down to ~ 0.1 pc) B-field structure of a 10 pc-long hub-filament system. Our analyses show variations in the polarization properties along the sub-filaments that may be tracing the evolution of their physical properties during their interaction with the ridge and hubs. We also detect an impact of feedback from young high-mass stars on the local B-field structure and the polarization properties, which could put constraints on possible models for dust grain alignment and provide important hints as to the interplay between the star formation activity and interstellar B-fields. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1715867
Publication Date:
NSF-PAR ID:
10388650
Journal Name:
Astronomy & Astrophysics
Volume:
647
Page Range or eLocation-ID:
A78
ISSN:
0004-6361
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We investigate the presence of hub-filament systems in a large sample of 146 active proto-clusters, using H13CO+ J = 1-0 molecular line data obtained from the ATOMS survey. We find that filaments are ubiquitous in proto-clusters, and hub-filament systems are very common from dense core scales (∼0.1 pc) to clump/cloud scales (∼1–10 pc). The proportion of proto-clusters containing hub-filament systems decreases with increasing dust temperature (Td) and luminosity-to-mass ratios (L/M) of clumps, indicating that stellar feedback from H ii regions gradually destroys the hub-filament systems as proto-clusters evolve. Clear velocity gradients are seen along the longest filaments with a mean velocity gradient of 8.71 km s−1 pc−1 and a median velocity gradient of 5.54 km s−1 pc−1. We find that velocity gradients are small for filament lengths larger than ∼1 pc, probably hinting at the existence of inertial inflows, although we cannot determine whether the latter are driven by large-scale turbulence or large-scale gravitational contraction. In contrast, velocity gradients below ∼1 pc dramatically increase as filament lengths decrease, indicating that the gravity of the hubs or cores starts to dominate gas infall at small scales. We suggest that self-similar hub-filament systems and filamentary accretion at all scales may play a key role in high-mass star formation.

  2. Abstract We have obtained sensitive dust continuum polarization observations at 850 μ m in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope as part of the B -fields in STar-forming Region Observations (BISTRO) survey. These observations allow us to probe magnetic field ( B -field) at high spatial resolution (∼2000 au or ∼0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis–Chandrasekhar–Fermi method, we estimate the B -field strengths in K04166, K04169, and Miz-8b to be 38 ± 14, 44 ± 16, and 12 ± 5 μ G, respectively. These cores show distinct mean B -field orientations. The B -field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B -field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. The B -field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B -field and not well correlated with other axes. In contrast, Miz-8b exhibits a disordered B -fieldmore »that shows no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B -field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B -field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux.« less
  3. Context. Recent surveys of the Galactic plane in the dust continuum and CO emission lines reveal that large (≳50 pc) and massive (≳10 5 M ⊙ ) filaments, know as giant molecular filaments (GMFs), may be linked to Galactic dynamics and trace the mid-plane of the gravitational potential in the Milky Way. Yet our physical understanding of GMFs is still poor. Aims. We investigate the dense gas properties of one GMF, with the ultimate goal of connecting these dense gas tracers with star formation processes in the GMF. Methods. We imaged one entire GMF located at l ~ 52–54° longitude, GMF54 (~68 pc long), in the empirical dense gas tracers using the HCN(1–0), HNC(1–0), and HCO + (1–0) lines, and their 13 C isotopologue transitions, as well as the N 2 H + (1–0) line. We studied the dense gas distribution, the column density probability density functions (N-PDFs), and the line ratios within the GMF. Results. The dense gas molecular transitions follow the extended structure of the filament with area filling factors between 0.06 and 0.28 with respect to 13 CO(1–0). We constructed the N-PDFs of H 2 for each of the dense gas tracers based on their column densitiesmore »and assumed uniform abundance. The N-PDFs of the dense gas tracers appear curved in log–log representation, and the HCO + N-PDF has the flattest power-law slope index. Studying the N-PDFs for sub-regions of GMF54, we found an evolutionary trend in the N-PDFs that high-mass star-forming and photon-dominated regions have flatter power-law indices. The integrated intensity ratios of the molecular lines in GMF54 are comparable to those in nearby galaxies. In particular, the N 2 H + / 13 CO ratio, which traces the dense gas fraction, has similar values in GMF54 and all nearby galaxies except Ultraluminous Infrared Galaxies. Conclusions. As the largest coherent cold gaseous structure in our Milky Way, GMFs, are outstanding candidates for connecting studies of star formation on Galactic and extragalactic scales. By analyzing a complete map of the dense gas in a GMF we have found that: (1) the dense gas N-PDFs appear flatter in more evolved regions and steeper in younger regions, and (2) its integrated dense gas intensity ratios are similar to those of nearby galaxies.« less
  4. Context. The role of large-scale magnetic fields in the evolution of star-forming regions remains elusive. Its investigation requires the observational characterization of well-constrained molecular clouds. The Monoceros OB 1 molecular cloud is a large complex containing several structures that have been shown to be engaged in an active interaction and to have a rich star formation history. However, the magnetic fields in this region have only been studied on small scales. Aims. We study the large-scale magnetic field structure and its interplay with the gas dynamics in the Monoceros OB 1 east molecular cloud. Methods. We combined observations of dust polarized emission from the Planck telescope and CO molecular line emission observations from the Taeduk Radio Astronomy Observatory 14-metre telescope. We calculated the strength of the plane-of-sky magnetic field using a modified Chandrasekhar-Fermi method and estimated the mass-over-flux ratios in different regions of the cloud. We used the comparison of the velocity and intensity gradients of the molecular line observations with the polarimetric observations to trace dynamically active regions. Results. The molecular complex shows an ordered large-scale plane-of-sky magnetic field structure. In the northern part, it is mostly orientated along the filamentary structures, while the southern part shows at leastmore »two regions with distinct magnetic field orientations. Our analysis reveals a shock region in the northern part right between two filamentary clouds that, in previous studies, were suggested to be involved in a collision. The magnetic properties of the north-main and north-eastern filaments suggest that these filaments once formed a single one, and that the magnetic field evolved together with the material and did not undergo major changes during the evolution of the cloud. In the southern part, we find that either the magnetic field guides the accretion of interstellar matter towards the cloud or it is dragged by the matter falling towards the main cloud. Conclusions. The large-scale magnetic field in the Monoceros OB 1 east molecular cloud is tightly connected to the global structure of the complex. In the northern part, it seems to serve a dynamically important role by possibly providing support against gravity in the direction perpendicular to the field and to the filament. In the southern part, it is probably the most influential factor governing the morphological structure by guiding possible gas inflow. A study of the whole Monoceros OB 1 molecular complex at large scales is necessary to form a global picture of the formation and evolution of the Monoceros OB 1 east cloud and the role of the magnetic field in this process.« less
  5. Context. LDN 1157 is one of several clouds that are situated in the cloud complex LDN 1147/1158. The cloud presents a coma-shaped morphology with a well-collimated bipolar outflow emanating from a Class 0 protostar, LDN 1157-mm, that resides deep inside the cloud. Aims. The main goals of this work are (a) mapping the intercloud magnetic field (ICMF) geometry of the region surrounding LDN 1157 to investigate its relationship with the cloud morphology, outflow direction, and core magnetic field (CMF) geometry inferred from the millimeter- and submillimeter polarization results from the literature, and (b) to investigate the kinematic structure of the cloud. Methods. We carried out optical ( R -band) polarization observations of the stars projected on the cloud to map the parsec-scale magnetic field geometry. We made spectroscopic observations of the entire cloud in the 12 CO, C 18 O, and N 2 H + ( J = 1–0) lines to investigate its kinematic structure. Results. We obtained a distance of 340 ± 3 pc to the LDN 1147/1158, complex based on the Gaia DR2 parallaxes and proper motion values of the three young stellar objects (YSOs) associated with the complex. A single filament of ~1.2 pc in length (tracedmore »by the Filfinder algorithm) and ~0.09 pc in width (estimated using the Radfil algorithm) is found to run throughout the coma-shaped cloud. Based on the relationships between the ICMF, CMF, filament orientations, outflow direction, and the hourglass morphology of the magnetic field, it is likely that the magnetic field played an important role in the star formation process in LDN 1157. LDN 1157-mm is embedded in one of the two high-density peaks detected using the Clumpfind algorithm. The two detected clumps lie on the filament and show a blue-red asymmetry in the 12 CO line. The C 18 O emission is well correlated with the filament and presents a coherent structure in velocity space. Combining the proper motions of the YSOs and the radial velocity of LDN 1147/1158 and an another complex, LDN 1172/1174, that is situated ~2° east of it, we found that the two complexes are moving collectively toward the Galactic plane. The filamentary morphology of the east-west segment of LDN 1157 may have formed as a result of mass lost by ablation through interaction of the moving cloud with the ambient interstellar medium.« less