Glowing fireflies dancing in the dark are one of the most enchanting sights of a warm summer night. Their light signals are ‘love messages’ that help the insects find a mate – yet, they also warn a potential predator that these beetles have powerful chemical defenses. The light comes from a specialized organ of the firefly where a small molecule, luciferin, is broken down by the enzyme luciferase. Fireflies are an ancient group, with the common ancestor of the two main lineages originating over 100 million years ago. But fireflies are not the only insects that produce light: certain click beetles are also bioluminescent. Fireflies and click beetles are closely related, and they both use identical luciferin and similar luciferases to create light. This would suggest that bioluminescence was already present in the common ancestor of the two families. However, the specialized organs in which the chemical reactions take place are entirely different, which would indicate that the ability to produce light arose independently in each group. Here, Fallon, Lower et al. try to resolve this discrepancy and to find out how many times bioluminescence evolved in beetles. This required using cutting-edge DNA sequencing to carefully piece together the genomes of two species of fireflies (Photinus pyralis and Aquatica lateralis) and one species of click beetle (Ignelater luminosus). The genetic analysis revealed that, in all species, the genes for luciferases were very similar to the genetic sequences around them, which code for proteins that break down fat. This indicates that the ancestral luciferase arose from one of these metabolic genes getting duplicated, and then one of the copies evolving a new role. However, the genes for luciferase were very different between the fireflies and the click beetles. Further analyses suggested that bioluminescence evolved at least twice: once in an ancestor of fireflies, and once in the ancestor of the bioluminescent click beetles. More results came from the reconstituted genomes. For example, Fallon, Lower et al. identified the genes ‘turned on’ in the bioluminescent organ of the fireflies. This made it possible to list genes that may be involved in creating luciferin, and enable flies to grow brightly for long periods. In addition, the genetic information yielded sequences from bacteria that likely live inside firefly cells, and which may participate in the light-making process or the production of potent chemical defenses. Better genetic knowledge of beetle bioluminescence could bring new advances for both insects and humans. It may help researchers find and design better light-emitting molecules useful to track and quantify proteins of interest in a cell. Ultimately, it would allow a detailed understanding of firefly populations around the world, which could contribute to firefly ecotourism and help to protect these glowing insects from increasing environmental threats.
more »
« less
Identification of a Female-Produced Sex Attractant Pheromone of the Winter Firefly, Photinus corruscus Linnaeus (Coleoptera: Lampyridae)
Abstract Firefly flashes are well-known visual signals used by these insects to find, identify, and choose mates. However, many firefly species have lost the ability to produce light as adults. These “unlighted” species generally lack developed adult light organs, are diurnal rather than nocturnal, and are believed to use volatile pheromones acting over a distance to locate mates. While cuticular hydrocarbons, which may function in mate recognition at close range, have been examined for a handful of the over 2000 extant firefly species, no volatile pheromone has ever been identified. In this study, using coupled gas chromatography - electroantennographic detection, we detected a single female-emitted compound that elicited antennal responses from wild-caught male winter fireflies,Photinus corruscus. The compound was identified as (1S)-exo-3-hydroxycamphor (hydroxycamphor). In field trials at two sites across the species’ eastern North American range, large numbers of maleP. corruscuswere attracted to synthesized hydroxycamphor, verifying its function as a volatile sex attractant pheromone. Males spent more time in contact with lures treated with synthesized hydroxycamphor than those treated with solvent only in laboratory two-choice assays. Further, using single sensillum recordings, we characterized a pheromone-sensitive odorant receptor neuron in a specific olfactory sensillum on maleP. corruscusantennae and demonstrated its sensitivity to hydroxycamphor. Thus, this study has identified the first volatile pheromone and its corresponding sensory neuron for any firefly species,and provides a tool for monitoringP. corruscuspopulations for conservation and further inquiry into the chemical and cellular bases for sexual communication among fireflies.
more »
« less
- Award ID(s):
- 2035286
- PAR ID:
- 10491698
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of Chemical Ecology
- Volume:
- 49
- Issue:
- 3-4
- ISSN:
- 0098-0331
- Page Range / eLocation ID:
- 164 to 178
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Most firefly genera have poorly defined taxonomic boundaries, especially in the Neotropics, where they are more diverse and more difficult to identify. Recent advances that shed light on the diversity of fireflies in South America have focused mainly on Atlantic Rainforest taxa, whereas lampyrids in other biomes remained largely unstudied. We found three new firefly species endemic to the Amazon basin that share unique traits of the male abdomen where sternum VIII and the pygidium are modified and likely work as a copulation clamp. Here we test and confirm the hypothesis that these three species form a monophyletic lineage and propose Haplocauda gen. nov. to accommodate the three new species. Both maximum parsimony and probabilistic (Bayesian and maximum likelihood) phylogenetic analyses confirmed Haplocauda gen. nov. monophyly, and consistently recovered it as the sister group to Scissicauda, fireflies endemic to the Atlantic Rainforest that also feature a copulation clamp on abdominal segment VIII, although with a different configuration. We provide illustrations, diagnostic descriptions, and keys to species based on males and females. The three new species were sampled from different regions, and are likely allopatric, a common pattern among Amazonian taxa.more » « less
-
Ostrinia nubilalis, a lepidopteran moth, also known as the European corn borer, has a major impact on the production of economically important crops in the United States and Europe. The female moth invites the male moth for mating through the release of pheromones, a volatile chemical signal. Pheromone binding proteins (PBPs) present in the male moth antennae are believed to pick up the pheromones, transport them across the aqueous sensillum lymph, and deliver them to the olfactory receptor neurons. Here we report for the first time the cloning, expression, refolding, purification, and structural characterization of Ostrinia nubilalis PBP3 (OnubPBP3). The recombinant protein showed nanomolar affinity to each isomer of the Ostrinia pheromones, E- and Z-11-tetradecenyl acetate. In a pH titration study by nuclear magnetic resonance, the protein exhibited an acid-induced unfolding at pH below 5.5. The molecular dynamics simulation study demonstrated ligand-induced conformational changes in the protein with both E- and Z-isomers of the Ostrinia pheromone. The simulation studies showed that while protein flexibility decreases upon binding to E-pheromone, it increases when bound to Z-pheromone. This finding suggests that the OnubPBP3 complex with E-pheromone is more stable than with Z-pheromone.more » « less
-
South America is likely the cradle of several New World firefly lineages but remains largely understudied. Despite several advances in firefly systematics in the Neotropical region, the Andean region has been largely unstudied for over a century. The Colombian Páramos are a critically threatened biodiversity hotspot that houses several endemic species, including the firefly genus Pseudolychnuris, with two species—P. vittata and P. suturalis. Here, by analyzing the phylogenetic relationships of Pseudolychnuris, we found that this genus is polyphyletic. Pseudolychnuris vittata and P. suturalis were found to be distantly related despite the striking similarity in outline and color pattern of males and females. We redescribe Pseudolychnuris and its type species P. vittata. Moreover, we revalidate Alychnus Kirsch, 1865 stat. rev. to accommodate A. suturaliscomb. nov., also redescribed here. We provide updated distribution maps and report field observations for both monotypic genera. Since adults visit flowers and interact with pollen and nectar, Pseudolychnuris and Alychnus may be occasional pollinators of Andean-endemic plants, a phenomenon previously neglected. Our findings reveal an interesting case of convergence between Pseudolychnuris and Alychnus—probably associated with life in the Páramos—and shed light on character evolution in the Photinini lineage of fireflies.more » « less
-
Three triorganotin (IV) cyclopentane carboxylates were synthesized and structurally characterized by in solid state by Fourier‐transform infrared spectroscopy and single crystal diffraction, and in solution by NMR (1H,13C, and119Sn) spectroscopy. The complexes were tested for their anticancer activity against MCF‐7 and HeLa cells along with normal BHK‐21 cells. As revealed by MTT assay, complex2was identified as the most potent derivative with an IC50value of 2.59 and 0.051 μM against HeLa and MCF‐7 cells, respectively. The results were compared with cisplatin as reference drug. Fluorescent microscopic studies using 4′,6‐diamidino‐2‐phenylindole (DAPI) and propidium iodide (PI) staining confirmed the occurrence of apoptosis in HeLa cells treated with the most active complex2. The complex2also triggered the release of lactate dehydrogenase (LDH) in treated HeLa and MCF‐7 cells whereas a luminescence assay displayed a remarkable increase in the activity of caspase‐9 and ‐3. Moreover, flow cytometric results revealed that complex2caused G0/G1 arrest in the treated HeLa cells. The complexes were further screened for DNA binding studies through UV‐vis spectroscopy and cyclic voltammetry. The high activity of complex2was attributed to its higher Lewis acidity as indicated by natural bond orbital (NBO) analysis. Theoretical modelling and molecular docking studies were also conducted to study the reactivity of complexes againstVEGFR 2 Kinase.more » « less
An official website of the United States government

