skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on January 10, 2025

Title: Neopolyploidy increases stress tolerance and reduces fitness plasticity across multiple urban pollutants: support for the “general-purpose” genotype hypothesis
Whole-genome duplication is a common macromutation with extensive impacts on gene expression, cellular function, and whole-organism phenotype. As a result, it has been proposed that polyploids have “general-purpose” genotypes that perform better than their diploid progenitors under stressful conditions. Here, we test this hypothesis in the context of stresses presented by anthropogenic pollutants. Specifically, we tested how multiple neotetraploid genetic lineages of the mostly asexually reproducing greater duckweed (Spirodela polyrhiza) perform across a favorable control environment and 5 urban pollutants (iron, salt, manganese, copper, and aluminum). By quantifying the population growth rate of asexually reproducing duckweed over multiple generations, we found that across most pollutants, but not all, polyploidy decreased the growth rate of actively growing propagules but increased that of dormant ones. Yet, when considering total propagule production, polyploidy increased tolerance to most pollutants, and polyploids maintained population-level fitness across pollutants better than diploids. Furthermore, broad-sense genetic correlations in growth rate among pollutants were all positive in neopolyploids but not so for diploids. Our results provide a rare test and support for the hypothesis that polyploids are more tolerant of stressful conditions and can maintain fitness better than diploids across heterogeneous stresses. These results may help predict that polyploids may be likely to persist in stressful environments, such as those caused by urbanization and other human activities.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Evolution Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polyploidy is widely acknowledged to have played an important role in the evolution and diversification of vascular plants. However, the influence of genome duplication on population-level dynamics and its cascading effects at the community level remain unclear. In part, this is due to persistent uncertainties over the extent of polyploid phenotypic variation, and the interactions between polyploids and co-occurring species, and highlights the need to integrate polyploid research at the population and community level. Here, we investigate how community-level patterns of phylogenetic relatedness might influence escape from minority cytotype exclusion, a classic population genetics hypothesis about polyploid establishment, and population-level species interactions. Focusing on two plant families in which polyploidy has evolved multiple times, Brassicaceae and Rosaceae, we build upon the hypothesis that the greater allelic and phenotypic diversity of polyploids allow them to successfully inhabit a different geographic range compared to their diploid progenitor and close relatives. Using a phylogenetic framework, we specifically test (1) whether polyploid species are more distantly related to diploids within the same community than co-occurring diploids are to one another, and (2) if polyploid species tend to exhibit greater ecological success than diploids, using species abundance in communities as an indicator of successful establishment. Overall, our results suggest that the effects of genome duplication on community structure are not clear-cut. We find that polyploid species tend to be more distantly related to co-occurring diploids than diploids are to each other. However, we do not find a consistent pattern of polyploid species being more abundant than diploid species, suggesting polyploids are not uniformly more ecologically successful than diploids. While polyploidy appears to have some important influences on species co-occurrence in Brassicaceae and Rosaceae communities, our study highlights the paucity of available geographically explicit data on intraspecific ploidal variation. The increased use of high-throughput methods to identify ploidal variation, such as flow cytometry and whole genome sequencing, will greatly aid our understanding of how such a widespread, radical genomic mutation influences the evolution of species and those around them. 
    more » « less
  2. Summary

    Polyploidy is a key driver of ecological and evolutionary processes in plants, yet little is known about its effects on biotic interactions. This gap in knowledge is especially profound for nutrient acquisition mutualisms, despite the fact that they regulate global nutrient cycles and structure ecosystems. Generalism in mutualistic interactions depends on the range of potential partners (niche breadth), the benefits obtained and ability to maintain benefits across a variety of partners (fitness plasticity). Here, we determine how each of these is influenced by polyploidy in the legume–rhizobium mutualism.

    We inoculated a broad geographic sample of natural diploid and autotetraploid alfalfa (Medicago sativa) lineages with a diverse panel ofSinorhizobiumbacterial symbionts. To analyze the extent and mechanism of generalism, we measured host growth benefits and functional traits.

    Autotetraploid plants obtained greater fitness enhancement from mutualistic interactions and were better able to maintain this across diverse rhizobial partners (i.e. low plasticity in fitness) relative to diploids. These benefits were not attributed to increases in niche breadth, but instead reflect increased rewards from investment in the mutualism.

    Polyploid plants displayed greater generalization in bacterial mutualisms relative to diploids, illustrating another axis of advantage for polyploids over diploids.

    more » « less
  3. Polyploidy commonly occurs in invasive species, and phenotypic plasticity (PP, the ability to alter one's phenotype in different environments) is predicted to be enhanced in polyploids and to contribute to their invasive success. However, empirical support that increased PP is frequent in polyploids and/or confers invasive success is limited. Here, we investigated if polyploids are more pre‐adapted to become invasive than diploids via the scaling of trait values and PP with ploidy level, and if post‐introduction selection has led to a divergence in trait values and PP responses between native‐ and non‐native cytotypes. We grew diploid, tetraploid (from both native North American and non‐native European ranges), and hexaploidSolidago giganteain pots outside with low, medium, and high soil nitrogen and phosphorus (NP) amendments, and measured traits related to growth, asexual reproduction, physiology, and insects/pathogen resistance. Overall, we found little evidence to suggest that polyploidy and post‐introduction selection shaped mean trait and PP responses. When we compared diploids to tetraploids (as their introduction into Europe was more likely than hexaploids) we found that tetraploids had greater pathogen resistance, photosynthetic capacities, and water‐use efficiencies and generally performed better under NP enrichments. Furthermore, tetraploids invested more into roots than shoots in low NP and more into shoots than roots in high NP, and this resource strategy is beneficial under variable NP conditions. Lastly, native tetraploids exhibited greater plasticity in biomass accumulation, clonal‐ramet production, and water‐use efficiency. Cumulatively, tetraploidS. giganteapossesses traits that might have predisposed and enabled them to become successful invaders. Our findings highlight that trait expression and invasive species dynamics are nuanced, while also providing insight into the invasion success and cyto‐geographic patterning ofS. giganteathat can be broadly applied to other invasive species with polyploid complexes.

    more » « less
  4. Premise

    Polyploidy is known to cause physiological changes in plants which, in turn, can affect species interactions. One major physiological change predicted in polyploid plants is a heightened demand for growth‐limiting nutrients. Consequently, we expect polyploidy to cause an increased reliance on the belowground mutualists that supply these growth‐limiting nutrients. An important first step in investigating how polyploidy affects nutritional mutualisms in plants, then, is to characterize differences in the rate at which diploids and polyploids interact with belowground mutualists.


    We usedHeuchera cylindrica(Saxifragaceae) to test how polyploidy influences interactions with arbuscular mycorrhizal fungi (AMF). Here we first confirmed the presence ofAMFinH. cylindrica, and then we used field‐collected specimens to quantify and compare the presence ofAMFstructures while controlling for site‐specific variation.


    Tetraploids had higher colonization rates as measured by total, hyphal, and nutritional‐exchange structures; however, we found that diploids and tetraploids did not differ in vesicle colonization rates.


    The results suggest that polyploidy may alter belowground nutritional mutualisms with plants. Because colonization by nutritional‐exchange structures was higher in polyploids but vesicle colonization was not, polyploids might form stronger associations with theirAMFpartners. Controlled experiments are necessary to test whether this pattern is driven by the direct effect of polyploidy onAMFcolonization.

    more » « less
  5. Abstract Aim

    Polyploids have been theorized to occur more frequently in environments that are subjected to severe conditions or sudden disruptions. Here we test the expectation that polyploid taxa occur more frequently in extreme or disrupted environments than their diploid counterparts, whether due to increased adaptive potential, environmental resilience or cross‐ploidy competition.


    South America.


    All frog genera in the area with both polyploid and diploid member species (Ceratophrys, Chiasmocleis, Odontophrynus, PhyllomedusaandPleurodema).


    In all, 13,556 occurrence records of 82 frog species were collected from the Global Biodiversity Information Facility. Species distribution models, range overlap estimates, statistical tests and principal component analyses were used to estimate and compare environments between diploid and polyploid species within and across genera using several categorical and quantitative variables taken from multiple publicly available sources.


    Almost all polyploid occurrences are found within southeastern South America, largely to the exclusion of diploids. Polyploid species occur more closely with intergeneric polyploids than they do with congeneric diploids. Southeastern South America is more temperate, seasonal and less forested when compared to the tropical environments more commonly inhabited by diploids. The habitat ranges of polyploid species are subject to greater temperature fluctuations than diploid species. This region has also experienced major transformations in the modern era, owing to an agriculture boom over the last century. Polyploid occurrences are more likely to be found in areas with greater cropland usage, fertilizer application and pesticide application than diploids.

    Main Conclusions

    Across species, temperature seasonality was the only variable with strong statistical differences between diploids and polyploids. Greater annual fluctuations in temperature may lead to more established polyploid species due to reasons mentioned above; however, extreme temperature differences are also known to contribute to polyploid gamete formation, providing a possible non‐selective explanation. Polyploid occurrences are also more likely to be found in areas of high agricultural impact, providing support for the hypothesis that polyploids are more resilient to environmental disruptions than diploids.

    more » « less