This article surveys the landscape of security verification approaches and techniques for computer systems at various levels: from a software-application level all the way to the physical hardware level. Different existing projects are compared, based on the tools used and security aspects being examined. Since many systems require both hardware and software components to work together to provide the system’s promised security protections, it is not sufficient to verify just the software levels or just the hardware levels in a mutually exclusive fashion. This survey especially highlights system levels that are verified by the different existing projects and presents to the readers the state of the art in hardware and software system security verification. Few approaches come close to providing full-system verification, and there is still much room for improvement.
more »
« less
DoppelVer: A Benchmark for Face Verification
The field of automated face verification has become saturated in recent years, with state-of-the-art methods outperforming humans on all benchmarks. Many researchers would say that face verification is close to being a solved problem. We argue that evaluation datasets are not challenging enough, and that there is still significant room for improvement in automated face verification techniques. This paper introduces the DoppelVer dataset, a challenging face verification dataset consisting of doppelganger pairs. Doppelgangers are pairs of individuals that are extremely visually similar, oftentimes mistaken for one another. With this dataset, we introduce two challenging protocols: doppelganger and Visual Similarity from Embeddings (ViSE). The doppelganger protocol utilizes doppelganger pairs as negative verification samples. The ViSE protocol selects negative pairs by isolating image samples that are very close together in a particular embedding space. In order to demonstrate the challenge that the DoppelVer dataset poses, we evaluate a state-of-the-art face verification method on the dataset. Our experiments demonstrate that the DoppelVer dataset is significantly more challenging than its predecessors, indicating that there is still room for improvement in face verification technology.
more »
« less
- Award ID(s):
- 2150394
- PAR ID:
- 10491771
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- International Symposium on Advances in Visual Computing (ISVC)
- Volume:
- 14361
- ISBN:
- 978-3-031-47969-4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Identifying vehicles across cameras in traffic surveillance is fundamentally important for public safety purposes. However, despite some preliminary work, the rapid vehicle search in large-scale datasets has not been investigated. Moreover, modelling a view-invariant similarity between vehicle images from different views is still highly challenging. To address the problems, in this paper, we propose a Ranked Semantic Sampling (RSS) guided binary embedding method for fast cross-view vehicle Re-IDentification (Re-ID). The search can be conducted by efficiently computing similarities in the projected space. Unlike previous methods using random sampling, we design tree-structured attributes to guide the mini-batch sampling. The ranked pairs of hard samples in the mini-batch can improve the convergence of optimization. By minimizing a novel ranked semantic distance loss defined according to the structure, the learned Hamming distance is view-invariant, which enables cross-view Re-ID. The experimental results demonstrate that RSS outperforms the state-of-the-art approaches and the learned embedding from one dataset can be transferred to achieve the task of vehicle Re-ID on another dataset.more » « less
-
Liveness Detection (LivDet)-Face is an international competition series open to academia and industry. The competition’s objective is to assess and report state-of-the-art in liveness / Presentation Attack Detection (PAD) for face recognition. Impersonation and presentation of false samples to the sensors can be classified as presentation attacks and the ability for the sensors to detect such attempts is known as PAD. LivDet-Face 2021 * will be the first edition of the face liveness competition. This competition serves as an important benchmark in face presentation attack detection, offering (a) an independent assessment of the current state of the art in face PAD, and (b) a common evaluation protocol, availability of Presentation Attack Instruments (PAI) and live face image dataset through the Biometric Evaluation and Testing (BEAT) platform. The competition can be easily followed by researchers after it is closed, in a platform in which participants can compare their solutions against the LivDet-Face winners.more » « less
-
Knowledge tracing is a method to model students’ knowledge and enable personalized education in many STEM disciplines such as mathematics and physics, but has so far still been a challenging task in computing disciplines. One key obstacle to successful knowledge tracing in computing education lies in the accurate extraction of knowledge components (KCs), since multiple intertwined KCs are practiced at the same time for programming problems. In this paper, we address the limitations of current methods and explore a hybrid approach for KC extraction, which combines automated code parsing with an expert-built ontology. We use an introductory (CS1) Java benchmark dataset to compare its KC extraction performance with the traditional extraction methods using a state-of-the-art evaluation approach based on learning curves. Our preliminary results show considerable improvement over traditional methods of student modeling. The results indicate the opportunity to improve automated KC extraction in CS education by incorporating expert knowledge into the process.more » « less
-
Finkbeiner, Bernd; Kovacs, Laura (Ed.)With the growing use of deep neural networks(DNN) in mis- sion and safety-critical applications, there is an increasing interest in DNN verification. Unfortunately, increasingly complex network struc- tures, non-linear behavior, and high-dimensional input spaces combine to make DNN verification computationally challenging. Despite tremen- dous advances, DNN verifiers are still challenged to scale to large ver- ification problems. In this work, we explore how the number of stable neurons under the precondition of a specification gives rise to verifica- tion complexity. We examine prior work on the problem, adapt it, and develop several novel approaches to increase stability. We demonstrate that neuron stability can be increased substantially without compromis- ing model accuracy and this yields a multi-fold improvement in DNN verifier performance.more » « less
An official website of the United States government

