skip to main content


Title: Face Liveness Detection Competition (LivDet-Face) - 2021
Liveness Detection (LivDet)-Face is an international competition series open to academia and industry. The competition’s objective is to assess and report state-of-the-art in liveness / Presentation Attack Detection (PAD) for face recognition. Impersonation and presentation of false samples to the sensors can be classified as presentation attacks and the ability for the sensors to detect such attempts is known as PAD. LivDet-Face 2021 * will be the first edition of the face liveness competition. This competition serves as an important benchmark in face presentation attack detection, offering (a) an independent assessment of the current state of the art in face PAD, and (b) a common evaluation protocol, availability of Presentation Attack Instruments (PAI) and live face image dataset through the Biometric Evaluation and Testing (BEAT) platform. The competition can be easily followed by researchers after it is closed, in a platform in which participants can compare their solutions against the LivDet-Face winners.  more » « less
Award ID(s):
1650503
NSF-PAR ID:
10323024
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
2021 IEEE International Joint Conference on Biometrics (IJCB)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Launched in 2013, LivDet-Iris is an international competition series open to academia and industry with the aim to assess and report advances in iris Presentation Attack Detection (PAD). This paper presents results from the fourth competition of the series: LivDet-Iris 2020. This year's competition introduced several novel elements: (a) incorporated new types of attacks (samples displayed on a screen, cadaver eyes and prosthetic eyes), (b) initiated LivDet-Iris as an on-going effort, with a testing protocol available now to everyone via the Biometrics Evaluation and Testing (BEAT)* open-source platform to facilitate reproducibility and benchmarking of new algorithms continuously, and (c) performance comparison of the submitted entries with three baseline methods (offered by the University of Notre Dame and Michigan State University), and three open-source iris PAD methods available in the public domain. The best performing entry to the competition reported a weighted average APCER of 59.10% and a BPCER of 0.46% over all five attack types. This paper serves as the latest evaluation of iris PAD on a large spectrum of presentation attack instruments. 
    more » « less
  2. Presentation attacks such as using a contact lens with a printed pattern or printouts of an iris can be utilized to bypass a biometric security system. The first international iris liveness competition was launched in 2013 in order to assess the performance of presentation attack detection (PAD) algorithms, with a second competition in 2015. This paper presents results of the third competition, LivDet-Iris 2017. Three software-based approaches to Presentation Attack Detection were submitted. Four datasets of live and spoof images were tested with an additional cross-sensor test. New datasets and novel situations of data have resulted in this competition being of a higher difficulty than previous competitions. Anonymous received the best results with a rate of rejected live samples of 3.36% and rate of accepted spoof samples of 14.71%. The results show that even with advances, printed iris attacks as well as patterned contacts lenses are still difficult for software-based systems to detect. Printed iris images were easier to be differentiated from live images in comparison to patterned contact lenses as was also seen in previous competitions. 
    more » « less
  3. This paper describes the results of the 2023 edition of the “LivDet” series of iris presentation attack detection (PAD) competitions. New elements in this fifth competition include (1) GAN-generated iris images as a category of presentation attack instruments (PAI), and (2) an evaluation of human accuracy at detecting PAI as a reference benchmark. Clarkson University and the University of Notre Dame contributed image datasets for the competition, composed of samples representing seven different PAI categories, as well as baseline PAD algorithms. Fraunhofer IGD, Beijing University of Civil Engineering and Architecture, and Hochschule Darmstadt contributed results for a total of eight PAD algorithms to the competition. Accuracy results are analyzed by different PAI types, and compared to human accuracy. Overall, the Fraunhofer IGD algorithm, using an attention-based pixel-wise binary supervision network, showed the best-weighted accuracy results (average classification error rate of 37.31%), while the Beijing University of Civil Engineering and Architecture’s algorithm won when equal weights for each PAI were given (average classification rate of 22.15%). These results suggest that iris PAD is still a challenging problem. 
    more » « less
  4. null (Ed.)
    In biometric systems, the process of identifying or verifying people using facial data must be highly accurate to ensure a high level of security and credibility. Many researchers investigated the fairness of face recognition systems and reported demographic bias. However, there was not much study on face presentation attack detection technology (PAD) in terms of bias. This research sheds light on bias in face spoofing detection by implementing two phases. First, two CNN (convolutional neural network)-based presentation attack detection models, ResNet50 and VGG16 were used to evaluate the fairness of detecting imposer attacks on the basis of gender. In addition, different sizes of Spoof in the Wild (SiW) testing and training data were used in the first phase to study the effect of gender distribution on the models’ performance. Second, the debiasing variational autoencoder (DB-VAE) (Amini, A., et al., Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure) was applied in combination with VGG16 to assess its ability to mitigate bias in presentation attack detection. Our experiments exposed minor gender bias in CNN-based presentation attack detection methods. In addition, it was proven that imbalance in training and testing data does not necessarily lead to gender bias in the model’s performance. Results proved that the DB-VAE approach (Amini, A., et al., Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure) succeeded in mitigating bias in detecting spoof faces. 
    more » « less
  5. Face recognition systems are susceptible to presentation attacks such as printed photo attacks, replay attacks, and 3D mask attacks. These attacks, primarily studied in visible spectrum, aim to obfuscate or impersonate a person’s identity. This paper presents a unique multispectral video face database for face presentation attack using latex and paper masks. The proposed Multispectral Latex Mask based Video Face Presentation Attack (MLFP) database contains 1350 videos in visible, near infrared, and thermal spectrums. Since the database consists of videos of subjects without any mask as well as wearing ten different masks, the effect of identity concealment is analyzed in each spectrum using face recognition algorithms. We also present the performance of existing presentation attack detection algorithms on the proposed MLFP database. It is observed that the thermal imaging spectrum is most effective in detecting face presentation attacks. 
    more » « less