Spiroplasma(classMollicutes) is a diverse wall-less bacterial genus whose members are strictly dependent on eukaryotic hosts (mostly arthropods and plants), with which they engage in pathogenic to mutualistic interactions.Spiroplasmaare generally fastidious to culturein vitro, especially those that are vertically transmitted by their hosts, which include flies in the genusDrosophila.Drosophilahas been invaded by at least three independent clades ofSpiroplasma: Poulsonii (the best studied, contains reproductive manipulators and defensive mutualists associated with two major clades ofDrosophilaand has amongst the highest substitution rates within bacteria), Citri (restricted to therepletagroup ofDrosophila) and Ixodetis. We report the first genome drafts ofDrosophila-associated Citri cladeSpiroplasma: strainsMoj fromDrosophila mojavensis, strainsAld-Tx fromDrosophila aldrichifrom Texas (newly discovered; also associated withDrosophila mulleri) and strainsHy2 fromDrosophila hydei(the onlyDrosophilaspecies known to naturally also harbour a Poulsonii clade strain, thereby providing an arena for horizontal gene transfer). Compared to their Poulsonii clade counterparts, we infer that the three Citri clade strains have the following: (1) equal or worse DNA repair abilities; (b) more limited metabolic capacities, which may underlie their comparatively lower titres and transmission efficiency; and (c) similar content of toxin domains, including at least one ribosome-inactivating protein, which is implicated in the Poulsonii-conferred defence against natural enemies. As a byproduct of our phylogenomic analyses and exhaustive search for certain toxin domains in public databases, we document the toxin repertoire in close relatives ofDrosophila-associatedSpiroplasma, and in a very divergent newly discovered lineage (i.e. ‘clade X’). Phylogenies of toxin-encoding genes or domains imply substantial exchanges between closely and distantly related strains. Surprisingly, despite encoding several toxin genes and achieving relatively high prevalences in certain natural populations (sAld-Tx in this study;sMoj in prior work), fitness assays ofsMoj (this study) andsAld-Tx (prior work) in the context of wasp parasitism fail to detect a beneficial effect to their hosts. Thus, how Citri clade strains persist in theirDrosophilahost populations remains elusive.
more »
« less
Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex
TheFusarium sambucinumspecies complex (FSAMSC) is one of the most taxonomically challenging groups of fusaria, comprising prominent mycotoxigenic plant pathogens and other species with various lifestyles. Among toxins produced by members of the FSAMSC, trichothecenes pose the most significant threat to public health. Herein a global collection of 171 strains, originating from diverse hosts or substrates, were selected to represent FSAMSC diversity. This strain collection was used to assess their species diversity, evaluate their potential to produce trichothecenes, and cause disease on wheat. Maximum likelihood and Bayesian analyses of a combined 3-gene dataset used to infer evolutionary relationships revealed that the 171 strains originally received as 48 species represent 74 genealogically exclusive phylogenetically distinct species distributed among six strongly supported clades:Brachygibbosum,Graminearum,Longipes,Novel,Sambucinum, andSporotrichioides. Most of the strains produced trichothecenes in vitro but varied in type, indicating that the six clades correspond to type A, type B, or both types of trichothecene-producing lineages. Furthermore, five strains representing two putative novel species within theSambucinumClade produced two newly discovered type A trichothecenes, 15-keto NX-2 and 15-keto NX-3. Strains of the two putatively novel species together with members of theGraminearumClade were aggressive toward wheat when tested for pathogenicity on heads of the susceptible cultivar Apogee.In planta, theGraminearumClade strains produced nivalenol or deoxynivalenol and the aggressiveSambucinumClade strains synthesized NX-3 and 15-keto NX-3. Other strains within theBrachygibbosum,Longipes,Novel,Sambucinum, andSporotrichioidesClades were nonpathogenic or could infect the inoculated floret without spreading within the head. Moreover, most of these strains did not produce any toxin in the inoculated spikelets. These data highlight aggressiveness toward wheat appears to be influenced by the type of toxin produced and that it is not limited to members of theGraminearumClade.
more »
« less
- Award ID(s):
- 1655980
- PAR ID:
- 10491820
- Editor(s):
- Karlovsky, Petr
- Publisher / Repository:
- Public Library of Science
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0245037
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The anaerobic gut fungi (AGF,Neocallimastigomycota) represent a basal zoosporic phylum within the kingdomFungi. Twenty genera are currently described, all of which were isolated from the digestive tracts of mammalian herbivores. Here, we report on the isolation and characterization of novel AGF taxa from faecal samples of tortoises. Twenty-nine fungal isolates were obtained from seven different tortoise species. Phylogenetic analysis using the D1/D2 region of the LSU rRNA gene, ribosomal internal transcribed spacer 1, and RNA polymerase II large subunit grouped all isolates into two distinct, deep-branching clades (clades T and B), with a high level of sequence divergence to their closest cultured relative (Khoyollomyces ramosus). Average amino acid identity values calculated using predicted peptides from the isolates’ transcriptomes ranged between 60.80–66.21 % (clade T), and 61.24–64.83 % (clade B) when compared to all other AGF taxa; values that are significantly below recently recommended thresholds for genus (85%) and family (75%) delineation in theNeocallimastigomycota. Both clades displayed a broader temperature growth range (20–45 °C, optimal 30 °C for clade T, and 30–42 °C, optimal 39 °C for clade B) compared to all other AGF taxa. Microscopic analysis demonstrated that strains from both clades produced filamentous hyphae, polycentric rhizoidal growth patterns, and monoflagellated zoospores. Isolates in clade T were characterized by the production of unbranched, predominantly narrow hyphae, and small zoospores, while isolates in clade B were characterized by the production of multiple sporangiophores and sporangia originating from a single central swelling resulting in large multi-sporangiated structures. Based on the unique phylogenetic positions, AAI values, and phenotypic characteristics, we propose to accommodate these isolates into two novel genera (TestudinimycesandAstrotestudinimyces), and species (T. gracilisandA. divisus) within the orderNeocallimastigales. The type species are strains T130AT(T. gracilis) and B1.1T(A. divisus).more » « less
-
Fusarium head blight (FHB), caused by the hemibiotrophic fungus Fusarium graminearum, is one of the major threats to global wheat productivity. A wheat pore-forming toxin-like (PFT) protein was previously reported to underlie Fhb1, the most widely used quantitative trait locus in FHB breeding programs worldwide. In the present work, wheat PFT was ectopically expressed in the model dicot plant Arabidopsis. Heterologous expression of wheat PFT in Arabidopsis provided a broad-spectrum quantitative resistance to fungal pathogens including F. graminearum, Colletotrichum higginsianum, Sclerotinia sclerotiorum, and Botrytis cinerea. However, there was no resistance to bacterial or oomycete pathogens Pseudomonas syringae and Phytophthora capsici, respectively in the transgenic Arabidopsis plants. To explore the reason for the resistance response to, exclusively, the fungal pathogens, purified PFT protein was hybridized to a glycan microarray having 300 different types of carbohydrate monomers and oligomers. It was found that PFT specifically hybridized with chitin monomer, N-acetyl glucosamine (GlcNAc), which is present in fungal cell walls but not in bacteria or oomycete species. This exclusive recognition of chitin may be responsible for the specificity of PFT-mediated resistance to fungal pathogens. Transfer of the atypical quantitative resistance of wheat PFT to a dicot system highlights its potential utility in designing broad-spectrum resistance in diverse host plants. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .more » « less
-
Abstract Fusarium head blight (FHB; caused byFusarium graminearum) is a destructive disease of wheat (Triticumspp.), barley (Hordeum vulgare), rye (Secale cerealeL.), and triticale (×TriticosecaleWittmack) not only reducing their yield but also contaminating the grain with mycotoxins such as deoxynivalenol (DON). Developing varieties with genetic resistance is integral to successfully manage FHB. Triticale acreage worldwide is steadily increasing. However, the genetic diversity of triticale for FHB resistance is not well characterized. In the present study, a sequential screening of a set of winter triticale accessions from a global collection was done for their type‐2 FHB resistance and DON accumulation. In the first‐year screening, 298 triticale accessions were tested for FHB in an artificially inoculated, misted‐field nursery with high inoculum density. Most of the triticale accessions were susceptible to FHB, and only 8% of the accessions showed resistance in the field nursery screening. Next, the 24 resistant accessions identified in the nursery screening were tested for 2 years in greenhouse and 17 accessions showed significantly lower FHB severity in Year 2 and/or Year 3. These 17 resistant accessions were further tested for their FHB severity and DON accumulation in Year 4 in greenhouse and for DON accumulation in Year 5 in the field FHB nursery. Eight accessions showed significantly lower FHB severity and nine accessions showed DON accumulation of less than 1 mg/kg in Year 4 greenhouse testing. Eleven accessions had significantly lower DON concentration than the susceptible check in the Year 5 field screening. The resistant accessions common across all years identified in the study can be used for enhancing FHB resistance and reducing DON accumulation in triticale breeding programs.more » « less
-
Genetic diversity found in crop wild relatives is critical to preserve and utilize for crop improvement to achieve sustainable food production amid climate change and increased demand. We genetically characterized a large collection of 1,041Aegilopsaccessions distributed among 23 different species using more than 45K single nucleotide polymorphisms identified by genotyping-by-sequencing. The Wheat Genetics Resource Center (WGRC)Aegilopsgermplasm collection was curated through the identification of misclassified and redundant accessions. There were 49 misclassified and 28 sets of redundant accessions within the four diploid species. The curated germplasm sets now have improved utility for genetic studies and wheat improvement. We constructed a phylogenetic tree and principal component analysis cluster for allAegilopsspecies together, giving one of the most comprehensive views ofAegilops. TheSitopsissection and the U genomeAegilopsclade were further scrutinized with in-depth population analysis. The genetic relatedness among the pair ofAegilopsspecies provided strong evidence for the species evolution, speciation, and diversification. We inferred genome symbols for two speciesAe.neglectaandAe.columnarisbased on the sequence read mapping and the presence of segregating loci on the pertinent genomes as well as genetic clustering. The high genetic diversity observed amongAegilopsspecies indicated that the genus could play an even greater role in providing the critical need for untapped genetic diversity for future wheat breeding and improvement. To fully characterize theseAegilopsspecies, there is an urgent need to generate reference assemblies for these wild wheats, especially for the polyploidAegilops.more » « less
An official website of the United States government

