skip to main content


Title: Unique Habitat for Benthic Foraminifera in Subtidal Blue Holes on Carbonate Platforms

Dissolution of carbonate platforms, like The Bahamas, throughout Quaternary sea-level oscillations have created mature karst landscapes that can include sinkholes and off-shore blue holes. These karst features are flooded by saline oceanic waters and meteoric-influenced groundwaters, which creates unique groundwater environments and ecosystems. Little is known about the modern benthic meiofauna, like foraminifera, in these environments or how internal hydrographic characteristics of salinity, dissolved oxygen, or pH may influence benthic habitat viability. Here we compare the total benthic foraminiferal distributions in sediment-water interface samples collected from <2 m water depth on the carbonate tidal flats, and the two subtidal blue holes Freshwater River Blue Hole and Meredith’s Blue Hole, on the leeward margin of Great Abaco Island, The Bahamas. All samples are dominated by miliolid foraminifera (i.e.,QuinqueloculinaandTriloculina), yet notable differences emerge in the secondary taxa between these two environments that allows identification of two assemblages: a Carbonate Tidal Flats Assemblage (CTFA) vs. a Blue Hole Assemblage (BHA). The CTFA includes abundant common shallow-water lagoon foraminifera (e.g.,Peneroplis,Rosalina,Rotorbis), while the BHA has higher proportions of foraminifera that are known to tolerate stressful environmental conditions of brackish and dysoxic waters elsewhere (e.g.,Pseudoeponides,Cribroelphidium,Ammonia). We also observe how the hydrographic differences between subtidal blue holes can promote different benthic habitats for foraminifera, and this is observed through differences in both agglutinated and hyaline fauna. The unique hydrographic conditions in subtidal blue holes make them great laboratories for assessing the response of benthic foraminiferal communities to extreme environmental conditions (e.g., low pH, dysoxia).

 
more » « less
Award ID(s):
1703087
NSF-PAR ID:
10491826
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
9
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Subsurface mixing of seawater and terrestrial-borne meteoric waters on carbonate landscapes creates karst subterranean estuaries, an area of the coastal aquifer with poorly understood carbon cycling, ecosystem functioning, and impact on submarine groundwater discharge. Caves in karst platforms facilitate water and material exchange between the marine and terrestrial environments, and their internal sedimentation patterns document long-term environmental change. Sediment records from a flooded coastal cave in Cozumel Island (Mexico) document decreasing terrestrial organic matter (OM) deposition within the karst subterranean estuary over the last ∼1,000 years, with older sediment likely exported out of the cave by intense storm events. While stable carbon isotopic values (δ 13 C org ranging from −22.5 to −27.1‰) and C:N ratios (ranging from 9.9 to 18.9) indicate that mangrove and other terrestrial detritus surrounding an inland sinkhole are the primarily sedimentary OM supply, an upcore decrease in bulk OM and enrichment of δ 13 C org values are observed. These patterns suggest that a reduction in the local mangrove habitat decreased the terrestrial particulate OM input to the cave over time. The benthic foraminiferal community in basal core sediment have higher proportions of infaunal taxa (i.e., Bolivina ) and Ammonia , and assemblages shift to increased miliolids and less infaunal taxa at the core-top sediment. The combined results suggest that a decrease in terrestrial OM through time had a concomitant impact on benthic meiofaunal habitats, potentially by impacting dissolved oxygen availability at the microhabitat scale or resource partitioning by foraminifera. The evidence presented here indicates that landscape and watershed level changes can impact ecosystem functioning within adjacent subterranean estuaries. 
    more » « less
  2. no editor (Ed.)
    Foraminifera (single celled protists with tests primarily of Calcium Carbonate) are directly influenced by ocean warming and hydrographic changes such as expansion of the low oxygen areas associated with anthropogenic climate change. Benthic and planktonic foraminifera communities are good indicators of hydrographic conditions at the sea-floor and sea surface, respectively. Though previous studies have demonstrated that there has been overall ocean surface warming in Southern California and that the oxygen minimum zone has expanded, the relationship between water temperature, dissolved oxygen and foraminifera abundance in the area offshore San Diego has not been extensively examined. Cored sediment samples along with hydrographic data collected during annual research cruises (2001-2012, 2018) on the RV Sproul at three stations (water depth 100 m, 200m 300 m) due west from San Diego, CA provide an opportunity to evaluate how benthic and planktonic foraminiferal communities have changed over the past 19 years. The objective of this research was to identify the foraminifera in these sediments and compare patterns between years to temperature and dissolved oxygen (DO). Sediment samples from the upper 1 cm of the seafloor using a multicore were sieved and the foraminifera were picked and examined under a Leica S9i microscope for identification to genus. Sea surface and bottom water temperature and DO concentrations were measured using a CTD. Analyses of the variation between sites and over time will indicate whether benthic and planktonic community changes track environmental changes in temperature and dissolved oxygen, providing valuable data to assess whether climate change is impacting marine communities. 
    more » « less
  3. none. (Ed.)
    Foraminifera are single celled organisms that have tests that are composed of calcium carbonate or detrital materials. The assemblages of foraminifera have been influenced by their immediate environment which depict the influence and results of man’s activities and other natural processes that occur in the environment. These environmental changes include salinity, pH, hydrocarbon pollution and organic matter. With these factors, paleoenvironmental interpretations are made by identifying the different patterns in the foraminifera communities. Variations in oxygen concentrations at the sediment-water interface have a significant impact on benthic foraminiferal assemblages and morphologic properties. This is seen in the vertical distribution of foraminifera in response to factors such as food, pore water, and oxygen. This study documents foraminiferal ecology and abundances across an oxygen transect off the coast of San Diego. Available oxygen ranges from >1.0ml/l are considered oxic; O2 values from 0.1 - 1.0ml/l will be considered dysoxic and O2 values <0.10ml/l will be considered anoxic. Previous work in this region has suggested that sediment grain size, rather than oxygen availability, may have as much of an impact on foraminiferal assemblages. These observations were made based on the fact that Cibicidoides wuellerstorfi, an epibenthic foraminifera preferring elevated substrates in well-oxygenated environments, were found in greater abundances at areas with coarser grained materials despite low available oxygen. C. wuellerstorfi has also been found to have I/Ca and test porosity (size and abundance of pores on the surface of the test) which correlate to the available oxygen in bottom waters at the time of test formation. Not only will this study document foraminiferal assemblages and abundances across an oxygen transect, but C. wuellerstorfi from key oxygen environments will be examined under SEM and used in porosity and I/Ca analyses which will contribute to the development of a quantitative oxygen proxy. The development of this quantitative oxygen proxy is essential because despite oxygen being one of the primary variables influencing major geochemical and faunal responses within the world’s ocean, no clear proxy currently exists in paleoceanographic reconstructions. 
    more » « less
  4. Under future climate scenarios, ocean temperatures that are presently extreme and qualify as marine heatwaves (MHW) are forecasted to increase in frequency and intensity, but little is known about the impact of these events on one of the most common paleoproxies, planktonic foraminifera. Planktonic foraminifera are globally ubiquitous, shelled marine protists. Their abundances and geochemistry vary with ocean conditions and fossil specimens are commonly used to reconstruct ancient ocean conditions. Planktonic foraminiferal assemblages are known to vary globally with sea surface temperature, primary productivity, and other hydrographic conditions, but have not been studied in the context of mid-latitude MHWs. For this study, the community composition and abundance of planktonic foraminifera were quantified for 2010-2019 along the Newport Hydrographic Line, a long-term monitoring transect at 44.6°N in the Northern California Current (NCC). Samples were obtained from archived plankton tows spanning 46 to 370 km offshore during annual autumn (August – October) cruises. Two MHWs impacted the region during this timeframe: the first during 2014-2016 and a second, shorter duration MHW in 2019. During the 2014-2016 MHW, warm water subtropical and tropical foraminifera species were more prevalent than the typical polar, subpolar, and transitional species common to this region. Cold water species were abundant again after the first MHW dissipated in late 2016. During the second, shorter-duration MHW in 2019, the assemblage consisted of a warm water assemblage but did not include tropical species. The foraminiferal assemblage variability correlated with changes in temperature and salinity in the upper 100 meters and was not correlated with distance offshore or upwelling. These results suggest that fossil foraminiferal assemblages from deep sea sediment cores may provide insight into the magnitude and frequency of past MHWs. 
    more » « less
  5. Abstract

    Mixed carbonate–siliciclastic deposits provide unique insights into hydrodynamic processes that control sedimentation in tidal systems. This study presents sedimentological and ichnological data from the upper Miocene to lower Pliocene Bouse Formation, which accumulated during regional transgression at the margin of a tidal strait near the north end of the ancestral Gulf of California. The basal carbonate member of the Bouse Formation records deposition in a tide‐influenced, compositionally mixed carbonate–siliciclastic system dominated by salt marsh, tidal flat and channel environments. The basal carbonate member is an overall deepening up succession of facies associations comprising: Facies Association 1 – siliciclastic‐rich heterolithic facies, lime mudstone with desiccation cracks, and plant debris rich carbonate silt interpreted as siliciclastic‐rich tidal flats; Facies Association 2 – well‐sorted gravels, siliciclastic‐rich sandy strata, lime mudstone with desiccation cracks, and sandy microbial micrite interpreted as tidal‐channel deposits; Facies Association 3 – carbonate‐rich heterolithic lime mudstone to well‐sorted, cross‐bedded bioclastic grainstone interpreted as intertidal to shallow subtidal deposits; and Facies Association 4 – lime mudstone interpreted as shallow to deep subtidal low‐energy deposits that record the end of tidal conditions in the basin. Trace fossils include marine formsGyrolithes,TeichichnusandThalassinoides,and non‐diagnostic formsArenicolites,Cochlichnus,Conichnus,Lockeia,Planolites,SkolithosandTreptichnus(known from marine, brackish and freshwater environments). The diminutive size of trace fossils reflects brackish conditions created by mixing of freshwater and seawater. This study provides evidence for a late Miocene to early Pliocene humid climate in south‐western North America, in stark contrast to the modern hyperarid climate. Factors that controlled the relative percentage of mixed carbonate and siliciclastic sediment include siliciclastic input from local rivers,in situcarbonate production, current energy, degree of tidal mixing and relative sea level. Pronounced facies variability at bedform, outcrop and basin scale documented in this study appears to be an important characteristic of mixed carbonate–siliciclastic deposits in tidal depositional systems.

     
    more » « less