skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tyramine and its Amtyr1 receptor modulate attention in honey bees (Apis mellifera)
Animals must learn to ignore stimuli that are irrelevant to survival and attend to ones that enhance survival. When a stimulus regularly fails to be associated with an important consequence, subsequent excitatory learning about that stimulus can be delayed, which is a form of nonassociative conditioning called ‘latent inhibition’. Honey bees show latent inhibition toward an odor they have experienced without association with food reinforcement. Moreover, individual honey bees from the same colony differ in the degree to which they show latent inhibition, and these individual differences have a genetic basis. To investigate the mechanisms that underly individual differences in latent inhibition, we selected two honey bee lines for high and low latent inhibition, respectively. We crossed those lines and mapped a Quantitative Trait Locus for latent inhibition to a region of the genome that contains the tyramine receptor geneAmtyr1[We use Amtyr1 to denote the gene and AmTYR1 the receptor throughout the text.]. We then show that disruption ofAmtyr1signaling either pharmacologically or through RNAi qualitatively changes the expression of latent inhibition but has little or slight effects on appetitive conditioning, and these results suggest that AmTYR1 modulates inhibitory processing in the CNS. Electrophysiological recordings from the brain during pharmacological blockade are consistent with a model that AmTYR1 indirectly regulates at inhibitory synapses in the CNS. Our results therefore identify a distinctAmtyr1-based modulatory pathway for this type of nonassociative learning, and we propose a model for howAmtyr1acts as a gain control to modulate hebbian plasticity at defined synapses in the CNS. We have shown elsewhere how this modulation also underlies potentially adaptive intracolonial learning differences among individuals that benefit colony survival. Finally, our neural model suggests a mechanism for the broad pleiotropy this gene has on several different behaviors.  more » « less
Award ID(s):
2014217 2212640
PAR ID:
10491834
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
12
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In temperate climates, honey bees rely on stored carbohydrates to sustain them throughout the winter. In nature, honey serves as the bees’ source of carbohydrates, but when managed, beekeepers often harvest honey and replace it with cheaper, artificial feed. The effects of alternative carbohydrate sources on colony survival, strength, and individual bee metabolic health are poorly understood. We assessed the impacts of carbohydrate diets (honey, sucrose syrup, high-fructose corn syrup, and invert syrup) on colony winter survival, population size, and worker bee nutritional state (i.e., fat content and gene expression of overwintered bees and emerging callow bees). We observed a nonsignificant trend for greater survival and larger adult population size among colonies overwintered on honey compared to the artificial feeds, with colonies fed high-fructose corn syrup performing particularly poorly. These trends were mirrored in individual bee physiology, with bees from colonies fed honey having significantly larger fat bodies than those from colonies fed high-fructose corn syrup. For bees fed honey or sucrose, we also observed gene expression profiles consistent with a higher nutritional state, associated with physiologically younger individuals. That is, there was significantly higher expression of vitellogenin and insulin-like peptide 2 and lower expression of insulin-like peptide 1 and juvenile hormone acid methyltransferase in the brains of bees that consumed honey or sucrose syrup relative to those that consumed invert syrup or high-fructose corn syrup. These findings further our understanding of the physiological implications of carbohydrate nutrition in honey bees and have applied implications for colony management. 
    more » « less
  2. When animals learn the association of a conditioned stimulus (CS) with an unconditioned stimulus (US), later presentation of the CS invokes a representation of the US. When the expected US fails to occur, theoretical accounts predict that conditioned inhibition can accrue to any other stimuli that are associated with this change in the US. Empirical work with mammals has confirmed the existence of conditioned inhibition. But the way it is manifested, the conditions that produce it, and determining whether it is the opposite of excitatory conditioning are important considerations. Invertebrates can make valuable contributions to this literature because of the well-established conditioning protocols and access to the central nervous system (CNS) for studying neural underpinnings of behavior. Nevertheless, although conditioned inhibition has been reported, it has yet to be thoroughly investigated in invertebrates. Here, we evaluate the role of the US in producing conditioned inhibition by using proboscis extension response conditioning of the honeybee (Apis mellifera). Specifically, using variations of a “feature-negative” experimental design, we use downshifts in US intensity relative to US intensity used during initial excitatory conditioning to show that an odorant in an odor–odor mixture can become a conditioned inhibitor. We argue that some alternative interpretations to conditioned inhibition are unlikely. However, we show variation across individuals in how strongly they show conditioned inhibition, with some individuals possibly revealing a different means of learning about changes in reinforcement. We discuss how the resolution of these differences is needed to fully understand whether and how conditioned inhibition is manifested in the honeybee, and whether it can be extended to investigate how it is encoded in the CNS. It is also important for extension to other insect models. In particular, work like this will be important as more is revealed of the complexity of the insect brain from connectome projects. 
    more » « less
  3. For social animals, the genotypes of group members affect the social environment, and thus individual behavior, often indirectly. We used genome-wide association studies (GWAS) to determine the influence of individual vs. group genotypes on aggression in honey bees. Aggression in honey bees arises from the coordinated actions of colony members, primarily nonreproductive “soldier” bees, and thus, experiences evolutionary selection at the colony level. Here, we show that individual behavior is influenced by colony environment, which in turn, is shaped by allele frequency within colonies. Using a population with a range of aggression, we sequenced individual whole genomes and looked for genotype–behavior associations within colonies in a common environment. There were no significant correlations between individual aggression and specific alleles. By contrast, we found strong correlations between colony aggression and the frequencies of specific alleles within colonies, despite a small number of colonies. Associations at the colony level were highly significant and were very similar among both soldiers and foragers, but they covaried with one another. One strongly significant association peak, containing an ortholog of the Drosophila sensory gene dpr4 on linkage group (chromosome) 7, showed strong signals of both selection and admixture during the evolution of gentleness in a honey bee population. We thus found links between colony genetics and group behavior and also, molecular evidence for group-level selection, acting at the colony level. We conclude that group genetics dominates individual genetics in determining the fatal decision of honey bees to sting. 
    more » « less
  4. Abstract Over the last quarter century, increasing honey bee colony losses motivated standardized large-scale surveys of managed honey bees (Apis mellifera), particularly in Europe and the United States. Here we present the first large-scale standardized survey of colony losses of managed honey bees and stingless bees across Latin America. Overall, 1736 beekeepers and 165 meliponiculturists participated in the 2-year survey (2016–2017 and 2017–2018). On average, 30.4% of honey bee colonies and 39.6% of stingless bee colonies were lost per year across the region. Summer losses were higher than winter losses in stingless bees (30.9% and 22.2%, respectively) but not in honey bees (18.8% and 20.6%, respectively). Colony loss increased with operation size during the summer in both honey bees and stingless bees and decreased with operation size during the winter in stingless bees. Furthermore, losses differed significantly between countries and across years for both beekeepers and meliponiculturists. Overall, winter losses of honey bee colonies in Latin America (20.6%) position this region between Europe (12.5%) and the United States (40.4%). These results highlight the magnitude of bee colony losses occurring in the region and suggest difficulties in maintaining overall colony health and economic survival for beekeepers and meliponiculturists. 
    more » « less
  5. In temperate climates, honey bees show strong phenotypic plasticity associated with seasonal changes. In summer, worker bees typically only survive for about a month and can be further classified as young nurse bees (which feed the developing brood) and older forager bees. In winter, brood production and foraging halts and the worker bees live several months. These differences in task and longevity are reflected in their physiology, with summer nurses and long-lived winter bees typically having larger fat bodies, high expression levels of vitellogenin (a longevity, nutrition, and immune-related gene), and larger provisioning glands in their head. The environmental factors (both within the colony and within the surrounding environment) that trigger this transition to long-lived winter bees are poorly understood. One theory suggests is that winter bees are an extended nurse bee state, brought on by a reduction in nursing duties in the fall (i.e., lower brood area). We examine that theory here by assessing nurse bee physiology in both the summer and fall, in colonies with varying levels of brood. We find that season is a better predictor of nurse bee physiology than brood area. This finding suggests that seasonal factors beyond brood area, such as pollen availability and colony demography, may be necessary for inducing the winter bee phenotype. This finding furthers our understanding of winter bee biology, which could have important implications for colony management for winter, a critical period for colony survival. 
    more » « less