skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Initial development of skill with a reversed bicycle and a case series of experienced riders
Abstract Riding a bicycle is considered a durable skill that cannot be forgotten. Here, novice participants practiced riding a reversed bicycle, in which a reversing gear inverted the handlebar’s rotation. Although learning to ride the reversed bicycle was possible, it was slow, highly variable, implicit, and followed an S-shape pattern. In the initial learning phase, failed attempts to ride the normal bicycle indicated strong interference between the two bicycle skills. While additional practice decreased this interference effect, a subset of learners could not ride either bicycle after eight sessions of practice. Experienced riders who performed extensive practice could switch bicycles without failed attempts and exhibited similar performance (i.e., similar handlebar oscillations) on both bicycles. However, their performance on the normal bicycle was worse than that of the novice bicycle riders at baseline. In conclusion, “unlearning” of the normal bicycle skill precedes the initial learning of the reversed bicycle skill, and a signature of such unlearning is still present following extensive practice.  more » « less
Award ID(s):
2216344
PAR ID:
10491880
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigated electric-scooter (e-scooter) rider behaviors and preferences to inform ways to increase safety for e-scooter riders. Data was collected from 329 e-scooter riders via two online and one in-person survey. Survey questions considered rider roadway infrastructure preferences, safety perceptions, and helmet-wearing behavior. Protected bike lanes were more commonly indicated as the safest infrastructure (62.4%) but were less likely to be the most preferred infrastructure (49.7%). Sidewalks were better matched between riders, indicating them as their preferred riding infrastructure (22.7%) and the perceived safest riding infrastructure (24.5%). Riders had low feelings of safety and preference for riding on major/neighborhood streets or on unprotected bike lanes. Riders reported significant concern about being hit by a moving vehicle, running into a pothole/rough roadway, and running into a moving vehicle. In line with the Theory of Planned Behavior, a significant relationship was found between the frequency of riding and helmet-wearing behavior, with more frequent riders being more likely to wear helmets. Findings suggest that existing roadway infrastructure may pose safety challenges and encourage rider-selected workarounds. Public policy may consider emphasizing protected bicycle lane development, rather than helmet mandates, to support e-scooter riding safety for all vulnerable road users. 
    more » « less
  2. Micromobility usage has increased significantly in the last several years as exemplified by shared escooters and privately owned bicycles. In this study, we use traffic camera footage to observe the behavior of over 700 shared e-scooters and privately owned bicycles in Asbury Park, New Jersey. We address the following questions: (1) What are the behavioral differences between bicycle and e-scooter usage in terms of helmet use, bike lane / sidewalk use, gender split, group riding, and by time of day? (2) Are more protective conditions associated with helmet use and bike lane / sidewalk use? And (3) what is the gender split between e-scooter users and cyclists? We find notable differences in safety precautions: around one third of cyclists but no shared e-scooter users were observed wearing a helmet. Among cyclists, helmet use was more prominent among men than women. However, men were more likely to ride on the road than women. We also found that the gender split was narrower among e-scooter users, with a nearly even gender split – as opposed to cyclists, where only 21% of cyclists were observed to be women. Our findings suggest that e-scooter users take fewer safety precautions, in that they are less likely to use a bike lane and to wear a helmet. We conclude with policy implications with regards to safety and gender differences between these two modes. 
    more » « less
  3. Electric scooters (or e-scooters) are among the most popular micromobility options that have experienced an enormous expansion in urban transportation systems across the world in recent years. Along with the increased usage of e-scooters, the increasing number of e-scooter-related injuries has also become an emerging global public health concern. However, little is known regarding the risk factors for e-scooter-related crashes and injury crashes. This study consisted of a two-phase survey questionnaire administered to a cohort of e-scooter riders (n = 210), which obtained exposure information on riders’ demographics, riding behaviors (including infrastructure selection), helmet use, and other crash-related factors. The risk ratios of riders’ self-reported involvement in an e-scooter-related crash (i.e., any crash versus no crash) and injury crash (i.e., injury crash versus non-injury crash) were estimated across exposure subcategories using the Negative Binomial regression approach. Males and frequent users of e-scooters were associated with an increased risk of e-scooter-related crashes of any type. For the e-scooter-related injury crashes, more frequently riding on bike lanes (i.e., greater than 25% of the time), either protected or unprotected, was identified as a protective factor. E-scooter-related injury crashes were more likely to occur among females, who reported riding on sidewalks and non-paved surfaces more frequently. The study may help inform public policy regarding e-scooter legislation and prioritize efforts to establish suitable road infrastructure for improved e-scooter riding safety. 
    more » « less
  4. In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process to remove the influence of specific examples from a given model. Although exact unlearning can be achieved through complete model retraining using the remaining dataset, the associated computational costs have driven the development of efficient, approximate unlearning techniques. Moving beyond data-centric MU approaches, our study introduces a novel model-based perspective: model sparsification via weight pruning, which is capable of reducing the gap between exact unlearning and approximate unlearning. We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. This leads to a new MU paradigm, termed prune first, then unlearn, which infuses a sparse model prior into the unlearning process. Building on this insight, we also develop a sparsity-aware unlearning method that utilizes sparsity regularization to enhance the training process of approximate unlearning. Extensive experiments show that our proposals consistently benefit MU in various unlearning scenarios. A notable highlight is the 77% unlearning efficacy gain of fine-tuning (one of the simplest unlearning methods) when using sparsity-aware unlearning. Furthermore, we demonstrate the practical impact of our proposed MU methods in addressing other machine learning challenges, such as defending against backdoor attacks and enhancing transfer learning. Codes are available at this https URL. 
    more » « less
  5. Abstract Bikebot (i.e., bicycle-based robot) is a class of underactuated balance robotic systems that require simultaneous trajectory tracking and balance control tasks. We present a tracking and balance control design of an autonomous bikebot. The external-internal convertible structure of the bikebot dynamics is used to design a causal feedback control to achieve both the tracking and balance tasks. A balance equilibrium manifold is used to define and capture the platform balance profiles and coupled interaction with the trajectory tracking performance. To achieve fully autonomous navigation, a gyrobalancer actuation is integrated with the steering and velocity control for stationary platform balance and stationary-moving switching. Stability and convergence analyses are presented to guarantee the control performance. Extensive experiments are presented to validate and demonstrate the autonomous control design. We also compare the autonomous control performance with human riding experiments and similar action strategies are found between them. 
    more » « less