skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NMR and GPC Analysis of Alkyd Resins: Influence of Synthesis Method, Vegetable Oil and Polyol Content
Alkyd resins are oil-based polymers that have been widely used for generations in the surface coating industry and beyond. Characterization of these resins is of high importance to understand the influence of its components on its behavior, compatibility with other resins, and final quality to ensure high durability. Here, NMR spectroscopy and GPC were used for characterizing differences in the chemical structure, molecular distribution, and dispersity between oil-based and fatty acid-based alkyd polymers made from sacha inchi and linseed oils. Sancha inchi (Plukentia volubilis L.) is a fruit-bearing plant native to South America and the Caribbean, and has a rich unsaturated fatty acid content. The effect of vegetable oil and polyol selection on the synthesis of alkyd resins for coating applications was analyzed. The influence of two different synthesis methods, monoglyceride and fatty acid processes, was also compared. Important structural differences were observed using NMR: one-dimensional spectra revealed the degree of unsaturated fatty acid chains along the polyester backbone, whereas, 2D NMR experiments facilitated chemical shift assignments of all signals. GPC analysis suggested that alkyd resins with homogeneous and high molecular weights can be obtained with the fatty acid process, and that resins containing pentaerythritol may have uniform chain lengths.  more » « less
Award ID(s):
1921854
PAR ID:
10491943
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Polymers
Volume:
15
Issue:
9
ISSN:
2073-4360
Page Range / eLocation ID:
1993
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Significant strides in the development of non-isocyanate polyurethane (NIPU) have been made in the coatings industry. Aligned with green chemistry principles, this study explores the use of bio-based, low volatile organic compounds and fast-curing waterborne NIPU for coating applications. The linseed oilbased cyclic carbonate was synthesized via a thiol–ene click reaction and was followed by an esterification reaction directly from linseed oil. In this structure, the cyclic carbonates are introduced as pendant functional groups to accelerate the curing. Next, a series of linseed oil-based waterborne NIPUs were synthesized and developed from the linseed oil-based cyclic carbonate, a bio-based fatty acid diamine, and an internal dispersion agent. Different formulations of the linseed oil-based NIPU coatings were designed by varying the internal dispersion agent content and urethane content, and a solvent-borne NIPU was included in the study for comparison purposes. The NIPU coatings with different formulations achieved a broad range of thermal stabilities, viscoelastic properties, and mechanical properties. The general coating properties—including hardness, solvent resistance, impact resistance, and adhesion—were evaluated to demonstrate the practical application of the waterborne NIPU in coatings. The linseed oil-based waterborne NIPU coatings exhibited performance comparable to both a solvent-borne NIPU coating and a commercial waterborne isocyanate-based polyurethane coating. 
    more » « less
  2. Presented is the synthesis of cyclic polyacetylenes from alkynes and a study probing the functional group tolerance of catalyst 1. The synthesized polymers were characterized by employing GPC, NMR, and IR spectroscopy. The cyclic polyacetylenes spontaneously degrade, leading to the formation of lower molecular weight linear analogues. The degradation rate varied significantly based on the monomer substituents. These discoveries collectively reveal the functional group limits of catalyst 1 and the subsequent stability of the synthesized polymers, thus opening new avenues for advanced polymer design and applications. 
    more » « less
  3. Paysonia auriculata (Brassicaceae) produces multiple hydroxy fatty acids as major components of the seed oil. We tracked the changes in seed oil composition and gene expression during development, starting 14 days after flowers had been pollinated. Seed oil changes showed initially higher levels of saturated and unsaturated fatty acids (FAs) but little accumulation of hydroxy fatty acids (HFAs). Starting 21 days after pollination (DAP) HFA content sharply increased, and reached almost 30% at 28 DAP. Total seed oil also increased from a low of approximately 2% at 14 DAP to a high of approximately 20% by 42 DAP. We identified almost all of the fatty acid synthesis and modification genes that are known from Arabidopsis, and, in addition, a strong candidate for the hydroxylase gene that mediates the hydroxylation of fatty acids to produce valuable hydroxy fatty acids (HFAs) in this species. The gene expression network revealed is very similar to that of the emerging oil crop, Physaria fendleri , in the sister genus to Paysonia . Phylogenetic analyses indicate the hydroxylase enzyme, FAH12, evolved only once in Paysonia and Physaria , and that the enzyme is closely related to FAD2 enzymes. Phylogenetic analyses of FAD2 and FAH12 in the Brassicaceae and outgroup genera suggest that the branch leading to the hydroxylase clade of Paysonia and Physaria is under relaxed selection, compared with the strong purifying selection found across the FAD2 lineages. 
    more » « less
  4. The development of inverse vulcanization has provided a simple method to create sulfur-based materials. The low cost, ease of synthesis, and variety of applications has led to a rapid expansion of the field. These polysulfides can be synthesized with a wide range of sulfur contents (20-90% S) depending on the desired properties. Garlic essential oil (GEO) has a high sulfur content, which offers the opportunity to replace sulfur, a petroleum byproduct, with a renewable monomer to make materials with moderate sulfur contents. Using a one-pot, solvent-free synthesis, comparable to inverse vulcanization, GEO can be polymerized to create renewable adhesives at temperatures as low as 120 °C with reaction times decreasing at higher temperatures. Here we have explored the composition of garlic oil from a variety of commercial suppliers by NMR. Through simple 1H NMR analysis, the major sulfur-containing compounds of GEO can be identified and differentiated by sulfur rank. These data were used to select garlic oils with varied compositions to examine the impact on the poly(GEO) properties using solubility, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis as well as adhesive performance. GEO was then subjected to different reaction times and temperatures and the degree of polymerization was monitored by 1H NMR. The polysulfides were then evaluated as adhesives at different extents of polymerization to better understand how the reaction conditions impact adhesive performance. The failure mode and mechanical properties of the polymers were analyzed using measurements of maximum adhesion strength and work of adhesion. This study has provided a better understanding of polymers formed from GEO, providing a viable route to developing renewable, S-based materials. 
    more » « less
  5. Degradable polymers are crucial in order to reduce plastic environmental pollution and waste accumulation. In this paper, a natural product, tannic acid was modified to be used as a polymer star core. The tannic acid was modified with atom transfer radical polymerization (ATRP) initiators and characterized by 1H NMR, FT-IR, and XPS. Twenty-five arm polymer stars were prepared by photoinduced ATRP of poly(methyl methacrylate) (PMMA) or poly(oligo(ethylene oxide) methacrylate) (molar mass Mw = 300 g/mol) (P(OEO300MA)). The polymer stars were degraded by cleaving the polymer star arms attached to the core by phenolic esters under mild basic conditions. The stars were analyzed before and after degradation by gel permeation chromatography (GPC). Cytotoxicity assays were performed on the P(OEO300MA) stars and corresponding degraded polymers, and were found to be nontoxic at the concentrations tested. 
    more » « less