- Award ID(s):
- 2108266
- PAR ID:
- 10539706
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Macromolecules
- Volume:
- 57
- Issue:
- 1
- ISSN:
- 0024-9297
- Page Range / eLocation ID:
- 71 to 77
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this report, a new class of functional chalcogenide hybrid inorganic/organic polymers (CHIPs) bearing free aryl amine groups that are amenable to post-polymerization modifications were synthesized. These functional CHIPs were synthesized via the inverse vulcanization of elemental sulfur with 4-vinylaniline without the need for functional group protection of amines. This polymer is the first example of a polysulfide or CHIP material to carry a useful primary amine functional group which can be successfully post functionalized with acid chlorides and isocyanates to improve the mechanical properties.more » « less
-
Amide bonds are ubiquitous in peptides, proteins, pharmaceuticals, and polymers. The formation of amide bonds is a straightforward process: amide bonds can be synthesized with relative ease because of the availability of efficient coupling agents. However, there is a substantive need for methods that do not require excess reagents. A catalyst that condenses amino acids could have an important impact by reducing the significant waste generated during peptide synthesis. We describe the rational design of a biomimetic catalyst that can efficiently couple amino acids featuring standard protecting groups. The catalyst design combines lessons learned from enzymes, peptide biosynthesis, and organocatalysts. Under optimized conditions, 5 mol % catalyst efficiently couples Fmoc amino acids without notable racemization. Importantly, we demonstrate that the catalyst is functional for the synthesis of oligopeptides on solid phase. This result is significant because it illustrates the potential of the catalyst to function on a substrate with a multitude of amide bonds, which may be expected to inhibit a hydrogen-bonding catalyst.more » « less
-
Abstract The combination of triazole/gold (TA‐Au) and Cu(OTf)2is identified as the optimal catalytic system for promoting intramolecular hydroboration for the synthesis of a six‐membered cyclic amine–borane. Excellent yields (up to 95 %) and regioselectivities (5‐exo vs. 6‐endo) were achieved through catalyst control and sequential dilution. Good functional‐group tolerance was attained, thus allowing the preparation of highly functionalized cyclic amine–borane substrates, which could not be achieved using other methods. Deuterium‐labeling studies support the involvement of a hydride addition to a gold‐activated alkyne with subsequent C−B bond formation.
-
Katz, Howard (Ed.)
Abstract The design of polymeric semiconductors exhibiting high electrical conductivity (σ) and thermoelectric power factor (PF) will be vital for flexible large‐area electronics. In this work, four polymers based on diketopyrrolopyrrole (DPP), 2,3‐dihydrothieno[3,4‐b][1,4]dioxine (EDOT), thieno[3,2‐b]thiophene (TT), and 3, 3′‐bis (2‐(2‐(2‐methoxyethoxy) ethoxy) ethoxy)‐2, 2′‐bithiophene (MEET) are investigated as side‐chains, with the MEET polymers newly synthesized for this study. These polymers are systematically doped with tetrafluorotetracyanoquinodimethane ( F4TCNQ), CF3SO3H, and the synthesized dopant Cp(CN)3‐(COOMe)3, differing in geometry and electron affinity. The DPP‐EDOT‐based polymer containing MEET as side‐chains exhibits the highest conductivity (σ) ≈700 S cm−1 in this series with the acidic dopant (CF3SO3H). This polymer also shows the lowest oxidation potential by cyclic voltammetry (CV), the strongest intermolecular interactions evidenced by differential scanning calorimetry (DSC), and has the most oxygen‐based functionality for possible hydrogen bonding and ionic screening. Other polymers exhibit high σ ≈300–500 S cm−1 and power factor up to 300 µW m−1K−2. The mechanism of conductivity is predominantly electronic, as validated by time‐dependent conductance studies and transient thermo voltage monitoring over time, including for those doped with the acid. These materials maintain significant thermal stability and air stability over ≈6 weeks. Density functional theory calculations reveal molecular geometries and inform about frontier energy levels. Raman spectroscopy, in conjunction with scanning electron microscopy (SEM‐EDS) and x‐ray diffraction, provides insight into the solid‐state microstructure and degree of phase separation of the doped polymer films. Infrared spectroscopy enables this study to further quantify the degree of charge transfer from polymer to dopant.
-
null (Ed.)Recent work has identified surface energy as a key figure of merit in predicting the morphology of bulk heterojunction organic solar cells and organic alloy formation in ternary blend organic solar cells. An efficient way of tuning surface energy in conjugated polymers is by introducing functionalised side chains. Here, we present a systematic study on a family of poly(3-hexylthiophene) (P3HT)-based random copolymers bearing five different functionalised side chains (ester, ether, diether, carbamate, nitrile) prepared by direct arylation polymerization (DArP) in terms of their effectiveness in tuning surface energy. This study also exemplifies the superior functional group tolerance in DArP compared to more traditional polymerization procedures. Water droplet contact angle measurements revealed that especially carbamates are highly effective in tuning surface energy, increasing the surface energy from 21.2 mN m −1 with P3HT to 25.5 mN m −1 and 28.6 mN m −1 in 25% and 50% carbamate functionalized copolymers, respectively. Importantly, by introducing a two-carbon-spacer between the conjugated backbone and the functional group, optical and electronic properties of P3HT could be largely maintained in the copolymers as determined by UV/Vis, cyclic voltammetry and space charge limited current hole mobility.more » « less