skip to main content


This content will become publicly available on June 29, 2024

Title: Theory of change: community engagement as an intervention to create disaster resilience

Community resilience is a compelling problem that brings together many disciplines of study. Too often researchers wait until the end of research projects to disseminate findings, and may not include any intentional efforts toward technology translation. Convergence, and particularly the technology transfer aspects of convergence, should be a central goal for resilience research. This paper presents a theory of change proposing community engagement as the intervention needed for realizing actual community resilience. Three illustrative examples simultaneously demonstrate the need for the intervention and are used to provide guidance to researchers interested in learning how to engage. The first example illustrates investigator-driven research via post-hurricane reconnaissance coupled with experimental testing in a wind laboratory. The first example exemplifies technology transfer through regulatory changes. The second example illustrates community-based research via a post-tornado reconnaissance study, and exemplifies technology transfer through industry and outreach publications and public media. The third example illustrates community-driven research that developed a local climate plan, and incorporated the co-production of knowledge. The research translated throughout the project due to the community engaged approach leading to immediate adoption of the final research outcomes. Findings from this paper can be used to help other researchers determine the level of community involvement and navigate technology transfer options based on the goals and context of their own research.

 
more » « less
Award ID(s):
2148878
NSF-PAR ID:
10491970
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Built Environment
Volume:
9
ISSN:
2297-3362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Post-disaster reconnaissance is vital for assessing the impact of a natural disaster on the built environment and informing improvements in design, construction, risk mitigation, and our understanding of extreme events. The data obtained from reconnaissance can also be utilized to improve disaster recovery planning by maximizing resource efficiency, minimizing waste, and promoting resilience in future disasters. This paper aims to investigate existing reconnaissance reports and datasets to identify the factors that impact the reusability of buildings post-disaster and to recommend strategies that align with circular economy goals. The study adopted a three-step research methodology to attain the proposed goals: (1) thematic analysis was used to evaluate types of damages reported in the reconnaissance reports; (2) a supervised machine-learning algorithm was employed to analyze reconnaissance datasets; and (3) a concept map was developed based on interviews of 109 stakeholders in disaster-prone communities to recommend strategies to adopt circular economy practices post-disaster. The study results highlight the recurring risks of damage to different parts of the building and how circular economy resilience practices like deconstruction can minimize waste and maximize resource efficiency during post-disaster recovery. The findings of the study promote a more regenerative economy to build resilience to the challenges of future extreme weather events.

     
    more » « less
  2. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  3. Broadband infrastructure in urban parks may serve crucial functions including an amenity to boost overall park use and a bridge to propagate WiFi access into contiguous neighborhoods. This project: SCC:PG Park WiFi as a BRIDGE to Community Resilience has developed a new model —Build Resilience through the Internet and Digital Greenspace Exposure, leveraging off-the-shelf WiFi technology, novel algorithms, community assets, and local partnerships to lower greenspace WiFi costs. This interdisciplinary work leverages: computer science, information studies, landscape architecture, and public health. Collaboration methodologies and relational definitions across disciplines are still nascent —especially when paired with civic-engaged, applied research. Student researchers (UG/Grad) are excellent partners in bridging disciplinary barriers and constraints. Their capacity to assimilate multiple frameworks has produced refinements to the project’s theoretical lenses and suggested novel socio-technical methodology improvements. Further, they are excellent ambassadors to community partners and stakeholders. In BRIDGE, we tested two mechanisms to augment student research participation. In both, we leveraged a classic, curriculum-based model named the Partnership for Action Learning in Sustainability program (PALS). This campus-wide, community-engaged initiative pairs faculty and students with community partners. PALS curates economic, environmental, and social sustainability challenges and scopes projects to customize appropriate coursework that addresses identified challenges. Outcomes include: literature searches, wireframes, and design plans that target solutions to civic problems. Constraints include the short semester timeframe and curriculum-learning-outcome constraints. (1) On BRIDGE, Dr. Kweon executed a semester-based Landscape Architecture PALS 400-level-studio. 18 undergraduates conducted in-class and in-field work to assess community needs and proposed design solutions for future park-wide WiFi. Research topics included: community-park history, neighborhood demographics, case-study analysis, and land-cover characteristics. The students conducted an in-Park, community engagement session —via interactive posterboard surveys, to gain input on what park amenities might be redesigned or added to promote WiFi use. The students then produced seven re-design plans; one included a café/garden, with an eco-corridor that integrated technology with nature. (2) From the classic, curriculum-based PALS model we created a summer-intensive for our five research assistants, to stimulate interdisciplinary collaboration in their research tasks and co-analysis of project data products: experimental technical WiFi-setup, community survey results, and stakeholder needs-assessments. Students met weekly with each other and team leadership, exchanged journal articles, and attended joint research events. This model shows promise for integrating students more formally into an interdisciplinary research project. An end-of-intensive focus group highlighted, from the students’ perspective, the pro/cons of this model. Results: In contrasting the two mechanisms, our results include: Model 1 is tried-and-trued and produces standardized, reliable products. However, as work is group based, student independence is limited —to explore topics/themes of interest. Civic groups are typically thrilled with the diversity of action plans produced. Model 2 provides greater independence in student-learning outcomes, fosters interdisciplinary, “dictionary-building” that can be used by the full team, deepens methodological approaches, and allows for student stipend payments. Lessons learned: intensive time frame needed more research team support and ideally should be extended, when possible, over the full project-span. UMD-IRB#1785365-4; NSF-award: 2125526. 
    more » « less
  4. In STEM education, many 4-year colleges and universities now get most of their students from community colleges. Students who transfer from community colleges, especially those who are underrepresented, often face problems, such as deciding whether or not to transfer, getting academic and non-academic support during the transfer, and finding a job. Also, program advisors at both 2-year and 4-year colleges and universities face problems because they need to know how their students make transfer decisions and how to help them be successful post-transfer. A data-driven and survey-based study will help establish a solid understanding of the underlying elements contributing to these challenges. In this paper, the researchers first conduct a literature review to identify the critical personal and academic factors that influence the transfer decision, particularly for students from traditionally disadvantaged groups. Secondly, an exploratory analysis of these factors was performed by inviting a small group of computing major students from both community colleges and universities to participate in a survey that includes a wide range of questions, from demographics and pre-transfer decisions to post-transfer performance. The preliminary findings indicated that financial challenges, university reputation, university location, job prospects, and family expectations are the primary factors influencing student transfer decisions. The findings of the study can be beneficial to underrepresented transfer students, their advisors, and other stakeholders in higher education. 
    more » « less
  5. Since its founding in 2018, the Structural Extreme Events Reconnaissance (StEER) Network has worked to deepen the capacity of the Natural Hazards Engineering (NHE) community for coordinated and standardized assessments of the performance of the built environment following natural hazard events. This paper positions StEER within the field of engineering reconnaissance and the Natural Hazards Engineering Research Infrastructure (NHERI), outlining its organizational model for coordinated community-led responses to wind, seismic, and coastal hazard events. The paper’s examination of StEER’s event response workflow, engaging a range of hardware and delivering a suite of products, demonstrates StEER’s contributions in the areas of: workflow and data standardization, data reliability to enable field-observation-driven research & development, efficiency in data collection and dissemination to speed knowledge sharing, near-real- time open data access for enhanced coordination and transparency, and flexibility in collaboration modes to reduce the “overhead” associated with reconnaissance and foster broad NHE community engagement in event responses as part of field and virtual assessment structural teams (FAST/VAST). StEER’s creation of efficient systems to deliver well-documented, reliable data suitable for diverse re-uses as well as rapidly disseminated synopses of the impact of natural hazard events on the built environment provide a distinctive complement to existing post-event reconnaissance initiatives. The implementation of these policies, protocols and workflows is then demonstrated with case studies from five events illustrating StEER’s different field response strategies: the Nashville, Tennessee Tornadoes (2020) – a Hazard Gradient Survey; the Palu Earthquake and Tsunami in Indonesia (2018) – a Representative Performance Study; the Puerto Rico Earthquakes (2019/2020) – using Targeted Case Studies; Hurricane Laura (2020) – leveraging Rapid Surveys to enable virtual assessments; and Hurricane Dorian (2019) in the Bahamas – a Phased Multi-Hazard Investigation. The use of these strategies has enabled StEER to respond to 36 natural hazard events, involving over 150 different individuals to produce 45 published reports/briefings, over 5000 publicly available app-based structural assessments, and over 1600 km (1000 mi) of street-level panoramic imagery in its first 2years of operation. 
    more » « less