skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revamping Sustainability Efforts Post-Disaster by Adopting Circular Economy Resilience Practices
Post-disaster reconnaissance is vital for assessing the impact of a natural disaster on the built environment and informing improvements in design, construction, risk mitigation, and our understanding of extreme events. The data obtained from reconnaissance can also be utilized to improve disaster recovery planning by maximizing resource efficiency, minimizing waste, and promoting resilience in future disasters. This paper aims to investigate existing reconnaissance reports and datasets to identify the factors that impact the reusability of buildings post-disaster and to recommend strategies that align with circular economy goals. The study adopted a three-step research methodology to attain the proposed goals: (1) thematic analysis was used to evaluate types of damages reported in the reconnaissance reports; (2) a supervised machine-learning algorithm was employed to analyze reconnaissance datasets; and (3) a concept map was developed based on interviews of 109 stakeholders in disaster-prone communities to recommend strategies to adopt circular economy practices post-disaster. The study results highlight the recurring risks of damage to different parts of the building and how circular economy resilience practices like deconstruction can minimize waste and maximize resource efficiency during post-disaster recovery. The findings of the study promote a more regenerative economy to build resilience to the challenges of future extreme weather events.  more » « less
Award ID(s):
2317424
PAR ID:
10496296
Author(s) / Creator(s):
;
Publisher / Repository:
Sustainability
Date Published:
Journal Name:
Sustainability
Volume:
15
Issue:
22
ISSN:
2071-1050
Page Range / eLocation ID:
15870
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A first foundational assessment is provided for disaster debris reconnaissance that includes identifying tools and techniques for reconnaissance activities, identifying challenges in field reconnaissance, and identifying and developing preliminary guidelines and standards based on advancements from a workshop held in 2022. In this workshop, reconnaissance activities were analyzed in twofold: in relation to post-disaster debris and waste materials and in relation to waste management infrastructure. A four-phase timeline was included to capture the full lifecycle of management activities ranging from collection to temporary storage to final management route: pre-disaster or pre-reconnaissance, post-disaster response (days/weeks), short-term recovery (weeks/months), and long-term recovery (months/years). For successful reconnaissance, objectives of field activities and data collection needs; data types and metrics; and measurement and determination methods need to be identified. A reconnaissance framework, represented using a 3x2x2x4 matrix, is proposed to incorporate data attributes (tools, challenges, guides), reconnaissance attributes (debris, infrastructure; factors, actions), and time attributes (pre-event, response, short-term, long-term). This framework supports field reconnaissance missions and protocols that are longitudinally based and focused on post-disaster waste material and infrastructure metrics that advance sustainable materials management practices. To properly frame and develop effective reconnaissance activities, actions for all data attributes (tools, challenges, guides) are proposed to integrate sustainability and resilience considerations. While existing metrics, tools, methods, standards, and protocols can be adapted for sustainable post-disaster materials management reconnaissance, development of new approaches are needed for addressing unique aspects of disaster debris management. 
    more » « less
  2. F. Vahedifard (Ed.)
    Recently, India has witnessed several extreme rainfall events that caused moderate to severe landslides. However, extreme landslide events and their impacts can be mitigated by implementing effective preventive measures and policies derived from well-documented reports. Systematic and efficient post-disaster reconnaissance practices coupled with imagery-based technologies are essential for collecting perishable data and detailed geo-disasters documentation. A review of the current practices that are being implemented globally for acquiring spatial-temporal information using advanced technologies is presented. To this end, research articles, reconnaissance, and social media reports of a few notable extreme landslide events, namely 2013 Uttarakhand India, 2015 Kfarnabrakh Lebanon, 2018 Hokkaido Japan Eastern, were summarized. The best practices for future landslide reconnaissance studies in India, including the benefits of methodically acquiring and archiving photographic imagery using mobile devices and cloud apps, are presented. 
    more » « less
  3. Abstract With rapid urbanization necessitating innovative strategies for urban adaptation, combining technological advancements and holistic methodologies, this research explored the synergy between urban metabolism and digital twin technologies to foster sustainable urban development. A pilot model representing a university building, including the surrounding streetscape, was constructed using the Unreal Engine. By using available CAD design drawings and GIS technologies, the physical spaces were modelled. The physical and analytical environments were integrated into the digital twin; material flow analysis was also conducted. The developed framework aims to offer a detailed visualization of building behaviour, facilitating comparisons with urban metabolism analysis. This approach holds promise for sustainable urban design by integrating diverse data streams through digital twin technologies. The potential impact of this research extends to the tracking, mapping, and analysis of crucial resource flows, such as materials, water, energy, and waste, fostering circular economy strategies within the built environment. Understanding urban metabolism facilitates the identification of resource-efficient opportunities, promoting resource recovery and reuse to reduce the environmental impact of urban cores. Embracing digital twin technologies and urban metabolism analysis offers cities streamlined data collection processes, supporting standardization and sustainable urban practices. This study marks a critical step towards integrating diverse data streams into urban metabolism analysis, aligning with circularity objectives in the built environment. By adopting this framework, cities can better understand new production and consumption patterns that prioritize the responsible use of natural resources, contributing to a more sustainable and resilient future. 
    more » « less
  4. Project Overview: This NSF-funded project (Award #2019754) is part of the Belmont Forum’s Disaster Risk, Reduction, and Resilience (DR3) initiative, a global effort to assess and mitigate disaster risks through transdisciplinary collaboration. The study investigates strategies to enhance the resilience of low-income communities living in flood-prone and climate-vulnerable regions, with a geographic focus on Brazil, East Africa, and the southeastern United States. The U.S. component centers on coastal and urban communities in Florida, particularly those at risk from flooding and extreme weather events. Research Objectives: Through a transdisciplinary approach, the project integrates machine learning, geospatial analytics, and socio-economic data to: - Assess community-level vulnerabilities to flooding and extreme heat, -Identify barriers to adopting disaster-resilient housing, - Co-design affordable, climate-resilient housing prototypes using sustainable, locally sourced materials. The research aims to support community-informed design strategies and policy recommendations that are adaptable across different socio-economic and geographic contexts. Dataset Description: The dataset contains responses from approximately 500 residents aged 18+ living in low-income, flood-prone neighborhoods in Florida. The survey captures detailed information on: - Housing conditions and infrastructure, - Disaster preparedness and flood risk perception, - Access to services during and after disasters, - Health and economic impacts of extreme weather events, - Community cohesion and recovery strategies. This dataset serves as a resource for researchers, urban planners, emergency response agencies, and policymakers seeking data-driven insights to inform resilient housing design, climate adaptation, and disaster recovery planning. Data Collection and Anonymity: Survey distribution and data collection were conducted in partnership with Centiment, a third-party research company that recruits demographically targeted panels for academic and applied research. For this study, Centiment distributed the survey to residents of low-income, flood-prone communities in Florida, based on geographic and socio-economic criteria specified by the research team. All personally identifiable information (PII), such as IP addresses, email addresses, and precise geolocation data, was removed prior to uploading the dataset to DesignSafe. The dataset has been reviewed to ensure participant anonymity in accordance with DesignSafe data protection policies and applicable ethical standards. 
    more » « less
  5. Unplanned disaster events can greatly disrupt access to essential resources, with calamitous outcomes for already vulnerable households. This is particularly challenging when concurrent extreme events affect both the ability of households to travel and the functioning of traditional transportation networks that supply resources. This paper examines the use of volunteer-based crowdsourced food delivery as a community resilience tactic to improve food accessibility during overlapping disruptions with lasting effects, such as the COVID-19 pandemic and climate disasters. The study uses large-scale spatio-temporal data (n = 28,512) on crowdsourced food deliveries in Houston, TX, spanning from 2020 through 2022, merged with data on community demographics and significant disruptive events occurring in the two-year timespan. Three research lenses are applied to understand the effectiveness of crowdsourced food delivery programs for food access recovery: 1) geographic analysis illustrates hot spots of demand and impacts of disasters on requests for food assistance within the study area; 2) linear spatio-temporal modeling identifies a distinction between shelter-in-place emergencies and evacuation emergencies regarding demand for food assistance; 3) structural equation modeling identifies socially vulnerable identity clusters that impact requests for food assistance. The findings from the study suggest that volunteerbased crowdsourced food delivery adds to the resilience of food insecure communities, supporting its effectiveness in serving its intended populations. The paper contributes to the literature by illustrating how resilience is a function of time and space, and that similarly, there is value in a dynamic representation of community vulnerability. The results point to a new approach to resource recovery following disaster events by shifting the burden of transportation from resource-seekers and traditional transportation systems to home delivery by a crowdsourced volunteer network. 
    more » « less